geomagnetic field model
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 4)

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Yanyan Yang ◽  
Gauthier Hulot ◽  
Pierre Vigneron ◽  
Xuhui Shen ◽  
Zeren Zhima ◽  
...  

AbstractUsing magnetic field data from the China Seismo-Electromagnetic Satellite (CSES) mission, we derive a global geomagnetic field model, which we call the CSES Global Geomagnetic Field Model (CGGM). This model describes the Earth’s magnetic main field and its linear temporal evolution over the time period between March 2018 and September 2019. As the CSES mission was not originally designed for main field modelling, we carefully assess the ability of the CSES orbits and data to provide relevant data for such a purpose. A number of issues are identified, and an appropriate modelling approach is found to mitigate these. The resulting CGGM model appears to be of high enough quality, and it is next used as a parent model to produce a main field model extrapolated to epoch 2020.0, which was eventually submitted on October 1, 2019 as one of the IGRF-13 2020 candidate models. This CGGM candidate model, the first ever produced by a Chinese-led team, is also the only one relying on a data set completely independent from that used by all other candidate models. A successful validation of this candidate model is performed by comparison with the final (now published) IGRF-13 2020 model and all other candidate models. Comparisons of the secular variation predicted by the CGGM parent model with the final IGRF-13 2020–2025 predictive secular variation also reveal a remarkable agreement. This shows that, despite their current limitations, CSES magnetic data can already be used to produce useful IGRF 2020 and 2020–2025 secular variation candidate models to contribute to the official IGRF-13 2020 and predictive secular variation models for the coming 2020–2025 time period. These very encouraging results show that additional efforts to improve the CSES magnetic data quality could make these data very useful for long-term monitoring of the main field and possibly other magnetic field sources, in complement to the data provided by missions such as the ESA Swarm mission.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Clemens Kloss ◽  
Christopher C. Finlay ◽  
Nils Olsen

AbstractModels of the geomagnetic field rely on magnetic data of high spatial and temporal resolution to give an accurate picture of the Earth’s internal magnetic field and its time-dependence. The magnetic data from low-Earth orbit satellites of dedicated magnetic survey missions such as CHAMP and Swarm play a key role in the construction of such models. Unfortunately, there are no magnetic data available from such satellites after the end of the CHAMP mission in 2010 and before the launch of the Swarm mission in late 2013. This limits our ability to recover signals on timescales of 3 years and less during this gap period. The magnetic data from platform magnetometers carried by satellites for navigational purposes may help address this data gap provided that they are carefully calibrated. Earlier studies have demonstrated that platform magnetometer data can be calibrated using a fixed geomagnetic field model as reference. However, this approach can lead to biased calibration parameters. An alternative approach has been developed in the form of a co-estimation scheme which consists of simultaneously estimating both the calibration parameters and a model of the internal part of the geomagnetic field. Here, we go further and develop a scheme, based on the CHAOS field modeling framework, that involves co-estimation of both internal and external geomagnetic field models along with calibration parameters of platform magnetometer data. Using our implementation, we are able to derive a geomagnetic field model spanning 2008 to 2018 with satellite magnetic data from CHAMP, Swarm, secular variation data from ground observatories, and platform magnetometer data from CryoSat-2 and the GRACE satellite pair. Through a number of experiments, we explore correlations between the estimates of the geomagnetic field and the calibration parameters, and suggest how these may be avoided. We find evidence that platform magnetometer data provide additional information on the secular acceleration, especially in the Pacific during the gap between CHAMP and Swarm. This study adds to the evidence that it is beneficial to use platform magnetometer data in geomagnetic field modeling.


Author(s):  
Bruno Zossi ◽  
Mariano Fagre ◽  
Hagay Amit ◽  
Ana G. Elias

2020 ◽  
Vol 17 (8) ◽  
pp. 1338-1342
Author(s):  
Gang Chen ◽  
Shan Yi ◽  
Zhihua Wang ◽  
Chunxiao Yan ◽  
Ting Yong ◽  
...  

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Terence J. Sabaka ◽  
Lars Tøffner-Clausen ◽  
Nils Olsen ◽  
Christopher C. Finlay

2020 ◽  
Vol 92 (3) ◽  
pp. 428-439
Author(s):  
Feng Cui ◽  
Dong Gao ◽  
Jianhua Zheng

Purpose The main reason for the low accuracy of magnetometer-based autonomous orbit determination is the coarse accuracy of the geomagnetic field model. Furthermore, the geomagnetic field model error increases obviously during geomagnetic storms, which can still further reduce the navigation accuracy. The purpose of this paper is to improve the accuracy of magnetometer-based autonomous orbit determination during geomagnetic storms. Design/methodology/approach In this paper, magnetometer-based autonomous orbit determination via a measurement differencing extended Kalman filter (MDEKF) is studied. The MDEKF algorithm can effectively remove the time-correlated portion of the measurement error and thus can evidently improve the accuracy of magnetometer-based autonomous orbit determination during geomagnetic storms. Real flight data from Swarm A are used to evaluate the performance of the MDEKF algorithm presented in this study. A performance comparison between the MDEKF algorithm and an extended Kalman filter (EKF) algorithm is investigated for different geomagnetic storms and sampling intervals. Findings The simulation results show that the MDEKF algorithm is superior to the EKF algorithm in terms of estimation accuracy and stability with a short sampling interval during geomagnetic storms. In addition, as the size of the geomagnetic storm increases, the advantages of the MDEKF algorithm over the EKF algorithm become more obvious. Originality/value The algorithm in this paper can improve the real-time accuracy of magnetometer-based autonomous orbit determination during geomagnetic storms with a low computational burden and is very suitable for low-orbit micro- and nano-satellites.


Sign in / Sign up

Export Citation Format

Share Document