magnetospheric currents
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
S. Toepfer ◽  
Y. Narita ◽  
W. Exner ◽  
D. Heyner ◽  
P. Kolhey ◽  
...  

AbstractPoloidal–toroidal magnetic field decomposition is a useful application of the Mie representation and the decomposition method enables us to determine the current density observationally and unambiguously in the local region of magnetic field measurement. The application and the limits of the decomposition method are tested against the Mercury magnetic field simulation in view of BepiColombo’s arrival at Mercury in 2025. The simulated magnetic field data are evaluated along the planned Mercury Planetary Orbiter (MPO) trajectories and the current system that is crossed by the spacecraft is extracted from the magnetic field measurements. Afterwards, the resulting currents are classified in terms of the established current system in the vicinity of Mercury. Graphical Abstract


Author(s):  
Joseph Bretz ◽  
C A van Eysden ◽  
Bennett Link

Abstract The highly tangled magnetic field of a magnetar supports shear waves similar to Alfvén waves in an ordered magnetic field. Here we explore if torsional modes excited in the stellar interior and magnetosphere can explain the quasi-periodic oscillations (QPOs) observed in the tail of the giant flare of SGR 1900+14. We solve the initial value problem for a tangled magnetic field that couples interior shear waves to relativistic Alfvén shear waves in the magnetosphere. Assuming stellar oscillations arise from the sudden release of magnetic energy, we obtain constraints on the energetics and geometry of the process. If the flare energy is deposited initially inside the star, the wave energy propagates relatively slowly to the magnetosphere which is at odds with the observed rise time of the radiative event of ≲ 10 ms. Nor can the flare energy be deposited entirely outside the star, as most of the energy reflects off the stellar surface, giving surface oscillations of insufficient magnitude to produce detectable modulations of magnetospheric currents. Energy deposition in a volume that straddles the stellar surface gives agreement with the observed rise time and excites a range of modes with substantial amplitude at observed QPO frequencies. In general, localized energy deposition excites a broad range of modes that encompasses the observed QPOs, though many more modes are excited than the number of observed QPOs. If the flare energy is deposited axisymmetrically, as is possible for a certain class of MHD instabilities, the number of modes that is excited is considerably reduced.


2021 ◽  
Author(s):  
Pedro Baltazar-Soares ◽  
Francisco Martinez Moreno ◽  
Joana Alves Ribeiro ◽  
Fernando Monteiro Santos ◽  
Maria Alexandra Pais ◽  
...  

<p>In the last decades, the phenomena of Geomagnetic Induced Currents (GICs) have received special attention as one of the main hazards of Space Weather and has been widely investigated. In the high and mid-latitudes, these large GICs can flow in power systems and become problematic and even severe enough to cause a complete system shutdown. Two major factors determine GICs: (1) the strength and orientation of the electric field in the power system, which depends on the ionospheric and magnetospheric currents as well as on the crust and mantle conductivity; and (2) the electric power network characteristics. The Earth's conductivity can be obtained based on geophysical measurements that give the distribution of the conductivity in-depth and laterally. A realistic model of conductivity can be built based on the interpretation of Magnetotelluric (MT) soundings. The power of this geophysical method resides in the fact that it uses a natural source of energy, which allows estimating the conductivity distribution from a dozen of meters to some kilometres in depth.</p><p>We present a 3D resistivity model of the entire Portugal mainland based on more than 40 broadband MT soundings spaced 50x50km. The present study aims to contribute to a better understanding of Portugal's crust and its main geological structures. As a more practical application, knowledge of the presence of resistivity/conductivity bodies is important to obtain more precise GICs estimations. </p><p> </p>


Author(s):  
J. D. Nichols ◽  
F. Allegrini ◽  
F. Bagenal ◽  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
...  

Author(s):  
S. E. Milan ◽  
L. B. N. Clausen ◽  
J. C. Coxon ◽  
J. A. Carter ◽  
M.-T. Walach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document