nuclear theory
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
M. S. Martin ◽  
S. R. Stroberg ◽  
J. D. Holt ◽  
K. G. Leach

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Reponen ◽  
R. P. de Groote ◽  
L. Al Ayoubi ◽  
O. Beliuskina ◽  
M. L. Bissell ◽  
...  

AbstractUnderstanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with the measurement of the charge radius of 96Ag (N = 49). The results provide a challenge for nuclear theory: calculations are unable to reproduce the pronounced discontinuity in the charge radii as one moves below N = 50. The technical advancements in this work open the N = Z region below 100Sn for further optical studies, which will lead to more comprehensive input for nuclear theory development.


2021 ◽  
Author(s):  
Á. Koszorús ◽  
X. F. Yang ◽  
W. G. Jiang ◽  
S. J. Novario ◽  
S. W. Bai ◽  
...  
Keyword(s):  

Author(s):  
Á. Koszorús ◽  
X. F. Yang ◽  
W. G. Jiang ◽  
S. J. Novario ◽  
S. W. Bai ◽  
...  

AbstractNuclear charge radii are sensitive probes of different aspects of the nucleon–nucleon interaction and the bulk properties of nuclear matter, providing a stringent test and challenge for nuclear theory. Experimental evidence suggested a new magic neutron number at N = 32 (refs. 1–3) in the calcium region, whereas the unexpectedly large increases in the charge radii4,5 open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with β-decay detection, we were able to extend charge radii measurements of potassium isotopes beyond N = 32. Here we provide a charge radius measurement of 52K. It does not show a signature of magic behaviour at N = 32 in potassium. The results are interpreted with two state-of-the-art nuclear theories. The coupled cluster theory reproduces the odd–even variations in charge radii but not the notable increase beyond N = 28. This rise is well captured by Fayans nuclear density functional theory, which, however, overestimates the odd–even staggering effect in charge radii. These findings highlight our limited understanding of the nuclear size of neutron-rich systems, and expose problems that are present in some of the best current models of nuclear theory.


2020 ◽  
Vol 102 (2) ◽  
Author(s):  
Saleh O. Allehabi ◽  
V. A. Dzuba ◽  
V. V. Flambaum ◽  
A. V. Afanasjev ◽  
S. E. Agbemava
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document