linear detector
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Judi Lapsley Miller

<p>The bandwidth-duration product, WT , is a fundamental parameter in most theories of aural amplitude discrimination of Gaussian noise. These theories predict that detectability is dependent on WT , but not on the individual values of bandwidth and duration. Due to the acoustical uncertainty principle, it is impossible to completely specify an acoustic waveform with both finite duration and finite bandwidth. An observer must decide how best to trade-off information in the time domain with information in the frequency domain. As Licklider (1963) states, "The nature of [the ear's] solution to the time-frequency problem is, in fact, one of the central problems in the psychology of hearing."This problem is still unresolved, primarily due to observer inconsistency in experiments, which degrades performance making it difficult to compare models. The aim was to compare human observers' ability to trade bandwidth and duration, with simulated and theoretical observers. Human observers participated in a parametric study where the bandwidth and duration of 500 Hz noise waveforms was systematically varied for the same bandwidth-duration products (WT = 1, 2, and 4, where W varied over 2.5-160 Hz, and T varied over 400-6.25 ms, in octave steps). If observers can trade bandwidth and duration, detectability should be constant for the same WT . The observers replicated the experiments six times so that group operating characteristic (GOC) analysis could be used to reduce the effects of their inconsistent decision making. Asymptotic errorless performance was estimated by extrapolating results from the GOC analysis, as a function of replications added. Three simulated ideal observers: the energy, envelope, and full-linear (band-pass filter, full-wave rectifier, and true integrator) detectors were compared with each other, with mathematical theory and with human observers. Asymptotic detectability relative to the full-linear detector indicates that human observers best detect signals with a bandwidth of 40-80 Hz and a duration of 50-100 ms, and that other values are traded off in approximately concentric ellipses of equal detectability. Human detectability of Gaussian noise was best modelled by the full-linear detector using a non-optimal filter. Comparing psychometric functions for this detector with human data shows many striking similarities, indicating that human observers can sometimes perform as well as an ideal observer, once their inconsistency is minimised. These results indicate that the human hearing system can trade bandwidth and duration of signals, but not optimally. This accounts for many of the disparate estimates of the critical band, rectifier, and temporal integrator, found in the literature, because (a) the critical band is adjustable, but has a minimum of 40-50 Hz, (b) the rectifier is linear, rather than square-law, and (c) the temporal integrator is either true or leaky with a very long time constant.</p>


2021 ◽  
Author(s):  
◽  
Judi Lapsley Miller

<p>The bandwidth-duration product, WT , is a fundamental parameter in most theories of aural amplitude discrimination of Gaussian noise. These theories predict that detectability is dependent on WT , but not on the individual values of bandwidth and duration. Due to the acoustical uncertainty principle, it is impossible to completely specify an acoustic waveform with both finite duration and finite bandwidth. An observer must decide how best to trade-off information in the time domain with information in the frequency domain. As Licklider (1963) states, "The nature of [the ear's] solution to the time-frequency problem is, in fact, one of the central problems in the psychology of hearing."This problem is still unresolved, primarily due to observer inconsistency in experiments, which degrades performance making it difficult to compare models. The aim was to compare human observers' ability to trade bandwidth and duration, with simulated and theoretical observers. Human observers participated in a parametric study where the bandwidth and duration of 500 Hz noise waveforms was systematically varied for the same bandwidth-duration products (WT = 1, 2, and 4, where W varied over 2.5-160 Hz, and T varied over 400-6.25 ms, in octave steps). If observers can trade bandwidth and duration, detectability should be constant for the same WT . The observers replicated the experiments six times so that group operating characteristic (GOC) analysis could be used to reduce the effects of their inconsistent decision making. Asymptotic errorless performance was estimated by extrapolating results from the GOC analysis, as a function of replications added. Three simulated ideal observers: the energy, envelope, and full-linear (band-pass filter, full-wave rectifier, and true integrator) detectors were compared with each other, with mathematical theory and with human observers. Asymptotic detectability relative to the full-linear detector indicates that human observers best detect signals with a bandwidth of 40-80 Hz and a duration of 50-100 ms, and that other values are traded off in approximately concentric ellipses of equal detectability. Human detectability of Gaussian noise was best modelled by the full-linear detector using a non-optimal filter. Comparing psychometric functions for this detector with human data shows many striking similarities, indicating that human observers can sometimes perform as well as an ideal observer, once their inconsistency is minimised. These results indicate that the human hearing system can trade bandwidth and duration of signals, but not optimally. This accounts for many of the disparate estimates of the critical band, rectifier, and temporal integrator, found in the literature, because (a) the critical band is adjustable, but has a minimum of 40-50 Hz, (b) the rectifier is linear, rather than square-law, and (c) the temporal integrator is either true or leaky with a very long time constant.</p>


2021 ◽  
Author(s):  
Hongxuan Yao ◽  
Dasheng Cui ◽  
Yao Li ◽  
Xin Lv

2021 ◽  
Vol 175 ◽  
pp. 107832
Author(s):  
Joaquín García-Gómez ◽  
Roberto Gil-Pita ◽  
Miguel Aguilar-Ortega ◽  
Manuel Utrilla-Manso ◽  
Manuel Rosa-Zurera ◽  
...  

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 388 ◽  
Author(s):  
Mahmoud A. Albreem ◽  
Mohammed H. Alsharif ◽  
Sunghwan Kim

Massive multiple-input multiple-output (M-MIMO) is a substantial pillar in fifth generation (5G) mobile communication systems. Although the maximum likelihood (ML) detector attains the optimum performance, it has an exponential complexity. Linear detectors are one of the substitutions and they are comparatively simple to implement. Unfortunately, they sustain a considerable performance loss in high loaded systems. They also include a matrix inversion which is not hardware-friendly. In addition, if the channel matrix is singular or nearly singular, the system will be classified as an ill-conditioned and hence, the signal cannot be equalized. To defeat the inherent noise enhancement, iterative matrix inversion methods are used in the detectors’ design where approximate matrix inversion is replacing the exact computation. In this paper, we study a linear detector based on iterative matrix inversion methods in realistic radio channels called QUAsi Deterministic RadIo channel GenerAtor (QuaDRiGa) package. Numerical results illustrate that the conjugate-gradient (CG) method is numerically robust and obtains the best performance with lowest number of multiplications. In the QuaDRiGA environment, iterative methods crave large n to obtain a pleasurable performance. This paper also shows that when the ratio between the user antennas and base station (BS) antennas ( β ) is close to 1, iterative matrix inversion methods are not attaining a good detector’s performance.


2018 ◽  
Vol 23 (09) ◽  
pp. 1 ◽  
Author(s):  
Pavel Subochev ◽  
Maxim Prudnikov ◽  
Vladimir Vorobyev ◽  
Anna Postnikova ◽  
Egor Sergeev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document