intrinsic diffusivity
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Mykhaylo Viktorovych Yarmolenko

Our investigations show that electrochemical corrosion of copper is faster than electrochemical corrosion of aluminium at temperatures below 100oC. Literature data analysis shows that the Al atoms diffuse faster than the Cu atoms at temperatures higher than 475oC, Al rich intermetallic compounds (IMCs) are formed faster in the Cu-Al system, and the Kirkendall plane shifts toward Al side. Electrochemical corrosion occurs due to electric current and due to diffusion. An electronic devise working time, for example, depends on initial copper cover thickness on aluminium wire, connected to the electronic devise, temperature, and volume and dislocation pipe diffusion coefficients, so copper, iron, and aluminium electrochemical corrosion rates are investigated experimentally at room temperature and at temperature 100oC. Intrinsic diffusivities ratios of copper and aluminium at different temperatures and diffusion activation energies in the Cu-Al system are calculated by proposed here methods using literature experimental data. Dislocation pipe and volume diffusion activation energies of pure iron are calculated separately by earlier proposed method using literature experimental data. Aluminium dissolved into NaCl solution as the Al3+ ions at room temperature and at temperature 100oC, iron dissolved into NaCl solution as the Fe2+ (not Fe3+) ions at room temperature and at temperature 100oC, copper dissolved into NaCl solution as the Cu+ ions at room temperature and as the Cu+ and the Cu2+ ions at temperature 100oC. It is founded experimentally that copper corrosion is higher than aluminium corrosion, and ratio of electrochemical corrosion rates, kCu/kAl>1, decreases with temperature increasing, although iron electrochemical corrosion rate doesn’t depend on temperature below 100oC. It is obvious, because melting point of iron is more higher then melting point of copper or aluminium. It is calculated that copper electrochemical corrosion rate is approximately equal to aluminium electrochemical corrosion at temperature about 300oC, so copper can dissolve into NaCl solution mostly as the Cu2+ ions at temperature about 300oC. Ratio of intrinsic diffusivities, DCu/DAl <1, increases with temperature increasing, and intrinsic diffusivity of aluminium could be approximately equal to intrinsic diffusivity of copper at temperature about 460oC.


NeuroImage ◽  
2019 ◽  
Vol 189 ◽  
pp. 401-414 ◽  
Author(s):  
Kenneth Wengler ◽  
Lev Bangiyev ◽  
Turhan Canli ◽  
Tim Q. Duong ◽  
Mark E. Schweitzer ◽  
...  

2019 ◽  
Vol 196 ◽  
pp. 176-187 ◽  
Author(s):  
Wei Sun ◽  
Sheng-Li Chen ◽  
Mingri Xu ◽  
Yaqian Wei ◽  
Ting-ting Fan ◽  
...  

1988 ◽  
Vol 38 (12) ◽  
pp. 8121-8130 ◽  
Author(s):  
H. Takai ◽  
K. N. Tu

1984 ◽  
Vol 35 ◽  
Author(s):  
R.B. Fair

ABSTRACTEnhanced dopant diffusion during RTA depends upon whether the following physical phenomena occur individually or in combination: (1) amorphization of the Si, (2) damage-induced dislocation formation, (3) damage annealing, (4) self-interstitial trapping, (5) solubility enhancement. RTA of B in crystalline or preamorphized Si presents significantly different environments for enhanced diffusion. In preamorphized Si, enhanced B diffusion is modeled as increased B solubility following SPE. In addition, a different intrinsic diffusivity is observed which corresponds to B diffusion in preamorphized Si. Anomalous diffusion of B and As from high dose implants can be modeled with the same mechanism -- self-interstitial trapping following SPE.


Sign in / Sign up

Export Citation Format

Share Document