dislocation pipe
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 413 ◽  
pp. 47-64
Author(s):  
Mykhaylo V. Yarmolenko

Our investigations show that electrochemical corrosion of copper is faster than electrochemical corrosion of aluminium at temperatures below 100°C. Literature data analysis shows that the Al atoms diffuse faster than the Cu atoms at temperatures higher than 475°C, Al rich intermetallic compounds (IMCs) are formed faster in the Cu-Al system, and the Kirkendall plane shifts toward the Al side. Electrochemical corrosion occurs due to electric current and due to diffusion. An electronic devise working time, for example, depends on initial copper cover thickness on aluminium wire, connected to the electronic devise, temperature, and volume and dislocation pipe diffusion coefficients, so copper, iron, and aluminium electrochemical corrosion rates are investigated experimentally at room temperature and at temperature 100°C. Intrinsic diffusivities ratios of copper and aluminium at different temperatures and diffusion activation energies in the Cu-Al system are calculated by proposed here methods using literature experimental data. Dislocation pipe and volume diffusion activation energies of pure iron are calculated separately by earlier proposed method using literature experimental data. Aluminium dissolved into NaCl solution as the Al3+ ions at room temperature and at temperature 100°C, iron dissolved into NaCl solution as the Fe2+ (not Fe3+) ions at room temperature and at temperature 100°C, copper dissolved into NaCl solution as the Cu+ ions at room temperature and as the Cu+ and the Cu2+ ions at temperature 100°C. It is found experimentally that copper corrosion is higher than aluminium corrosion, and ratio of electrochemical corrosion rates, kCu/kAl>1, decreases with temperature increasing, although iron electrochemical corrosion rate does not depend on temperature below 100°C. It is obvious, because the melting point of iron is more higher than the melting point of copper or aluminium. It is calculated that the copper electrochemical corrosion rate is approximately equal to aluminium electrochemical corrosion at temperature about 300°C, so copper can dissolve into NaCl solution mostly as the Cu2+ ions at temperature about 300°C. The ratio of intrinsic diffusivities, DCu/DAl<1, increases with temperature increasing, and the intrinsic diffusivity of aluminium could be approximately equal to the intrinsic diffusivity of copper at temperature about 460oC. Intrinsic diffusivities ratios in the Cu-Zn system at temperature 400°C and in the Cu-Sn system at temperatures from 190°C to 250°C are analyzed theoretically using literature experimental data. Diffusion activation energies and pre-exponential coefficients for the Cu-Sn system are calculated combining literature experimental results.


2021 ◽  
Author(s):  
Mykhaylo Viktorovych Yarmolenko

Our investigations show that electrochemical corrosion of copper is faster than electrochemical corrosion of aluminium at temperatures below 100°C. Literature data analysis shows that the Al atoms diffuse faster than the Cu atoms at temperatures higher than 475°C, Al-rich intermetallic compounds (IMCs) are formed faster in the Cu-Al system, and the Kirkendall plane shifts towards the Al side. Electrochemical corrosion occurs due to electric current and diffusion. An electronic device working time, for example, depends on the initial copper cover thickness on the aluminium wire, connected to the electronic device, temperature, and volume and dislocation pipe diffusion coefficients, so copper, iron, and aluminium electrochemical corrosion rates are investigated experimentally at room temperature and at temperature 100°C. Intrinsic diffusivities ratios of copper and aluminium at different temperatures and diffusion activation energies in the Cu-Al system are calculated by the proposed methods here using literature experimental data. Dislocation pipe and volume diffusion activation energies of pure iron are calculated separately by earlier proposed methods using literature experimental data. Aluminium dissolved into NaCl solution as the Al3+ ions at room temperature and at temperature 100°C, iron dissolved into NaCl solution as the Fe2+ (not Fe3+) ions at room temperature and at temperature 100°C, copper dissolved into NaCl solution as the Cu+ ions at room temperature, and as the Cu+ and the Cu2+ ions at temperature 100°C. It is found experimentally that copper corrosion is higher than aluminium corrosion, and the ratio of electrochemical corrosion rates, kCu/kAl > 1, decreases with temperature increasing, although iron electrochemical corrosion rate does not depend on temperature below 100°C. It is obvious because the melting point of iron is higher than the melting point of copper or aluminium. It is calculated that copper electrochemical corrosion rate is approximately equal to aluminium electrochemical corrosion at a temperature of about 300°C, so the copper can dissolve into NaCl solution mostly as the Cu2+ ions at a temperature of about 300°C. The ratio of intrinsic diffusivities, DCu/DAl < 1, increases with temperature increasing, and intrinsic diffusivity of aluminium could be approximately equal to intrinsic diffusivity of copper at a temperature of about 460°C.


Small ◽  
2021 ◽  
pp. 2104944
Author(s):  
Jae‐Hwan Kim ◽  
Young‐Hwan Lee ◽  
Jun‐Hyoung Park ◽  
Byeong‐Joo Lee ◽  
Young‐Woon Byeon ◽  
...  

Author(s):  
Mykhaylo Viktorovych Yarmolenko

Our investigations show that electrochemical corrosion of copper is faster than electrochemical corrosion of aluminium at temperatures below 100oC. Literature data analysis shows that the Al atoms diffuse faster than the Cu atoms at temperatures higher than 475oC, Al rich intermetallic compounds (IMCs) are formed faster in the Cu-Al system, and the Kirkendall plane shifts toward Al side. Electrochemical corrosion occurs due to electric current and due to diffusion. An electronic devise working time, for example, depends on initial copper cover thickness on aluminium wire, connected to the electronic devise, temperature, and volume and dislocation pipe diffusion coefficients, so copper, iron, and aluminium electrochemical corrosion rates are investigated experimentally at room temperature and at temperature 100oC. Intrinsic diffusivities ratios of copper and aluminium at different temperatures and diffusion activation energies in the Cu-Al system are calculated by proposed here methods using literature experimental data. Dislocation pipe and volume diffusion activation energies of pure iron are calculated separately by earlier proposed method using literature experimental data. Aluminium dissolved into NaCl solution as the Al3+ ions at room temperature and at temperature 100oC, iron dissolved into NaCl solution as the Fe2+ (not Fe3+) ions at room temperature and at temperature 100oC, copper dissolved into NaCl solution as the Cu+ ions at room temperature and as the Cu+ and the Cu2+ ions at temperature 100oC. It is founded experimentally that copper corrosion is higher than aluminium corrosion, and ratio of electrochemical corrosion rates, kCu/kAl&gt;1, decreases with temperature increasing, although iron electrochemical corrosion rate doesn’t depend on temperature below 100oC. It is obvious, because melting point of iron is more higher then melting point of copper or aluminium. It is calculated that copper electrochemical corrosion rate is approximately equal to aluminium electrochemical corrosion at temperature about 300oC, so copper can dissolve into NaCl solution mostly as the Cu2+ ions at temperature about 300oC. Ratio of intrinsic diffusivities, DCu/DAl &lt;1, increases with temperature increasing, and intrinsic diffusivity of aluminium could be approximately equal to intrinsic diffusivity of copper at temperature about 460oC.


2021 ◽  
Author(s):  
Jae-Hwan Kim ◽  
Young-Hwan Lee ◽  
Jun-Hyoung Park ◽  
Byeong-Joo Lee ◽  
Young-Woon Byeon ◽  
...  

2020 ◽  
Vol 20 (5) ◽  
pp. 3493-3498 ◽  
Author(s):  
Jérôme Nicolas ◽  
Simone Assali ◽  
Samik Mukherjee ◽  
Andriy Lotnyk ◽  
Oussama Moutanabbir

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Magnus Garbrecht ◽  
Bivas Saha ◽  
Jeremy L. Schroeder ◽  
Lars Hultman ◽  
Timothy D. Sands

2016 ◽  
Vol 23 (12) ◽  
pp. 1277-1280 ◽  
Author(s):  
Jie Lin ◽  
Xi-nan Luo ◽  
Xiao-yan Zhong ◽  
Hui-hua Zhou ◽  
Cun-yu Wang ◽  
...  

2014 ◽  
Vol 922 ◽  
pp. 728-733 ◽  
Author(s):  
Georg Stechauner ◽  
Ernst Kozeschnik

Cu precipitation in steel has been investigated numerous times. Still, a consistent simulation of the nucleation, growth and coarsening kinetics of Cu precipitates is lacking. Major reason for this is the fact that Cu precipitation involves complex physical interactions and mechanisms, which go beyond the classical precipitation models based on evaporation and absorption of precipitate-forming monomers (atoms). In the present work, we attempt a comprehensive modeling approach, incorporating coalescence results from Monte Carlo simulation, prediction of the nucleus composition based on the minimum energy barrier concept, diffusion enhancement from quenched-in vacancies, dislocation pipe diffusion, as well as the transformation sequence of Cu-precipitates from bcc-9R-fcc. Our simulations of number density, radius and phase fraction coincide well with experimental values. The results are consistent over a large temperature range, which is demonstrated in a TTP-plot.


Sign in / Sign up

Export Citation Format

Share Document