asymmetric pores
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Harutoshi Hagino ◽  
Koji Miyazaki

The size effect on thermal conduction due to phonon boundary scattering in films was studied as controlling heat conduction. Thermal rectifier was proposed as a new heat control concept by a ballistic rectifier relies on asymmetric scattering of phonons in asymmetric linear structure. We focus on the thermal rectification effect in membrane with asymmetric pores. We discussed on the thermal rectification effect from the calculation and thermal conductivity measurement of asymmetric structured membrane. Thermal conduction was calculated by using radiation calculation of ANSYS Fluent based on Boltzmann transport theory which is development of equation of phonon radiative transfer from view point of phonon mean free path and boundary scattering condition. In-plane thermal conductivities of free standing membranes with microsized asymmetric pores were measured by periodic laser heating measurement. From the result of calculation, phonons were transition to ballistic transport in the membranes with asymmetric shaped pores and thermal rectification effect was obtained on the condition of specular scattering because of the asymmetric back-scattering of ballistic phonons from asymmetric structure. The thermal rectification effect was increased with decreasing thickness of membrane shorter and shorter than mean free path of phonon. From the result of measurements, we were able to confirm the reduction of thermal conductivity based on ballistic phonon transport theory, but the strong thermal rectification effect was not confirmed.


2015 ◽  
Vol 72 ◽  
pp. 150-155
Author(s):  
I.M. Kurcharov ◽  
N.I. Laguntsov ◽  
O.V. Kurchatova

Author(s):  
K. S. Kim ◽  
I. S. Davis ◽  
P. A. Macpherson ◽  
T. J. Pedley ◽  
A. E. Hill

Osmosis through semi–permeable pores is a complex process by which solvent is driven by its free energy gradient towards a solute–rich reservoir. We have studied osmotic flow across a semi–permeable cylindrical pore using hard–sphere molecular dynamics which simulates osmosis in the absence of attractive forces between solute and solvent. In addition, we recorded the rates of pressure–driven solvent flow and the diffusive flow of labelled solvent under concentration gradients. It is apparent that there are differences, which are radius dependent, between viscous and diffusive solvent permeabilities in small pores. The osmotic flow rate is decreased by allowing solute entry into part of the pore, an effect which is not due to solute obstruction. The flow rate is dependent on the structure of the pore, which for asymmetric pores leads, surprisingly, to flow asymmetry or osmotic rectification. In the absence of any possible viscous rectification at these very low flow rates the effect correlates with changes between diffusive and pressure flows created by the presence of solute, an effect which has been predicted from thermodynamic arguments. The geometry of a semi–permeable pore in relation to the solute size is therefore required to predict the osmotic flow rate, a departure from the classical picture. Finally, by extracting transport parameters from simulations with pure solvent, we examine the departure of observed flow rate from that predicted by continuum mechanics, obtaining drag coefficients which we compare with those derived from hydrodynamics alone.


Sign in / Sign up

Export Citation Format

Share Document