Large Stokes Shift
Recently Published Documents





Elizabeth M. Santos ◽  
Wei Sheng ◽  
Rahele Esmatpour Salmani ◽  
Setare Tahmasebi Nick ◽  
Alireza Ghanbarpour ◽  

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1105
Tsuneaki Sakurai ◽  
Masaya Kobayashi ◽  
Hiroyuki Yoshida ◽  
Masaki Shimizu

Fluorescent molecules with excited-state intramolecular proton transfer (ESIPT) character allow the efficient solid-state luminescence with large Stokes shift that is important for various applications, such as organic electronics, photonics, and bio-imaging fields. However, the lower fluorescence quantum yields (ΦFL) in the solution or viscous media, due to their structural relaxations in the excited state to reach the S0/S1 conical intersection, shackle further applications of ESIPT-active luminophores. Here we report that the introduction of a cyano group (-CN) into the phenyl group of 2-(2-hydroxyphenyl) benzothiazole (HBT), a representative ESIPT compound, remarkably increase its fluorescence quantum yield (ΦFL) from 0.01 (without -CN) to 0.49 (with -CN) in CH2Cl2, without disturbing its high ΦFL (=0.52) in the solid state. The large increase of the solution-state ΦFL of the cyano-substituted HBT (CN-HBT) is remarkable, comparing with our previously reported ΦFL values of 0.05 (with 4-pentylphenyl), 0.07 (with 1-hexynyl), and 0.15 (with 4-pentylphenylethynyl). Of interest, the newly-synthesized compound, CN-HBT, is miscible in a conventional room-temperature nematic liquid crystal (LC), 4-pentyl-4′-cyano biphenyl (5CB), up to 1 wt% (~1 mol%), and exhibits a large ΦFL of 0.57 in the viscous LC medium. A similar ΦFL value of ΦFL = 0.53 was also recorded in another room-temperature LC, trans-4-(4-pentylcyclohexyl)benzonitrile (PCH5), with a doping ratio of 0.5 wt% (~0.5 mol%). These 5CB/CN-HBT and PCH5/CN-HBT mixtures serve as light-emitting room-temperature LCs, and show anisotropic fluorescence with the dichroic ratio of 3.1 upon polarized excitation, as well as electric field response of luminescence intensity changes.

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5428
Xheila Yzeiri ◽  
Massimo Calamante ◽  
Alessio Dessì ◽  
Daniele Franchi ◽  
Andrea Pucci ◽  

Organic fluorophores have found broad application as emitters in luminescent solar concentrators (LSCs) for silicon photovoltaics. In particular, the preparation of organic conjugated systems with intense light-harvesting ability, emissions in the deep-red and NIR regions, and large Stokes shift values represent a very challenging undertaking. Here, we report a simple and easy way to prepare three symmetrical donor–acceptor–donor (DAD) organic-emitting materials based on a thienopyrazine core. The central core in the three dyes was modified with the introduction of aromatic substituents, aiming to affect their optical properties. The fluorophores were characterized by spectroscopic studies. In all cases, visible-NIR emissions with large Stokes shifts were found, highlighting these molecules as promising materials for the application in LSCs.

2021 ◽  
Vol 22 (16) ◽  
pp. 8949
Huiqing Luo ◽  
Na Li ◽  
Liyan Liu ◽  
Huaqiao Wang ◽  
Feng He

Fluorophores with aggregation-induced emission enhancement (AIEE) properties have attracted increasing interest in recent years. On the basis of our previous research, we successfully designed and synthesized eleven chalcones. Through an optical performance experiment, we confirmed that compounds 1–6 had obvious AIEE properties. As these AIEE molecules had excellent fluorescence properties and a large Stokes shift, we studied their application in living cell imaging, and the results showed that these compounds had low cytotoxicity and good biocompatibility at the experimental concentrations. More importantly, they could specifically label mitochondria. Subsequently, we selected zebrafish as experimental animals to explore the possibilities of these compounds in animal imaging. The fluorescence imaging of zebrafish showed that these AIEE molecules can enter the embryo and can be targeted to aggregate in the digestive tract, which provides a strong foundation for their practical application in the field of biological imaging. Compared with traditional fluorophores, these AIEE molecules have the advantages of possessing a small molecular weight and high flexibility. Therefore, they have excellent application prospects in the field of biological imaging. In addition, the findings of this study have very positive practical significance for the discovery of more AIEE molecules.

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2743
Jameelah Al-Harby ◽  
Haja Tar ◽  
Sadeq M. Al-Hazmy

The boron difluoride complex is known as an extraordinary class of fluorescent dyes, which has attracted research interest because of its excellent properties. This article reports the optical properties such as absorption, fluorescence, molar absorptivity, and photo-physical parameters like dipole moment, and oscillator strength of new fluorescent organic dye based on boron difluoride complex 2-(1-(difluoroboraneyl)-1,2-dihydroquinolin-2-yl)-2-(1-methylquinoxalin-2-ylidene) acetonitrile (DBDMA). The spectral characterization of the dye was measured in sol-gel glass, photosol-gel, and organic–inorganic matrices. The absorption and fluorescence properties of DBDMA in sol-gel glass matrices were compared with each other. Compared with the classical sol-gel, it was noticed that the photosol-gel matrix is the best one with immobilized DBDMA. In the latter, a large stokes shift was obtained (97 nm) and a high fluorescence quantum yield of 0.5. Special attention was paid to the addition of gold NPs into the hybrid material. The fluorescence emission intensity of the DBDMA with and without gold nanoparticles in different solid media is described, and that displayed organic–inorganic matrix behavior is the best host.

2021 ◽  
Vol 9 ◽  
Thanh Chung Pham ◽  
Van-Nghia Nguyen ◽  
Yeonghwan Choi ◽  
Dongwon Kim ◽  
Ok-Sang Jung ◽  

The ability to detect hypochlorite (HOCl/ClO−) in vivo is of great importance to identify and visualize infection. Here, we report the use of imidazoline-2-thione (R1SR2) probes, which act to both sense ClO− and kill bacteria. The N2C=S moieties can recognize ClO− among various typical reactive oxygen species (ROS) and turn into imidazolium moieties (R1IR2) via desulfurization. This was observed through UV–vis absorption and fluorescence emission spectroscopy, with a high fluorescence emission quantum yield (ՓF = 43–99%) and large Stokes shift (∆v∼115 nm). Furthermore, the DIM probe, which was prepared by treating the DSM probe with ClO−, also displayed antibacterial efficacy toward not only Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) but also methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum ß-lactamase–producing Escherichia coli (ESBL-EC), that is, antibiotic-resistant bacteria. These results suggest that the DSM probe has great potential to carry out the dual roles of a fluorogenic probe and killer of bacteria.

Sign in / Sign up

Export Citation Format

Share Document