incident heat flux
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Austin R. Baird ◽  
Walt Gill ◽  
Hector Mendoza ◽  
Victor Figueroa

Abstract Often in fire resistance testing of packaging vessels and other components, both the heat source temperature and the incident heat flux on a test specimen need to be measured and correlated. Standards such as ASTM E1529 require a specified temperature range from the heat source and a specified heatflux on the surface of the test specimen. There are other standards that have similar requirements. The geometry of the test environment and specimen may make heat flux measurements using traditional instruments (directional flame thermometers (DFTs) and water-cooled radiometers) difficult to implement. Orientation of the test specimen with respect to the thermal environment is also important to ensure that the heat flux on the surface of the test specimen is properly measured. Other important factors in the flux measurement include the thermal mass and surface emissivity of the test specimen. This paper describes the development of a cylindrical calorimeter using water-cooled wide-angle Schmidt-Bolter gauges to measure the incident heat flux for a vessel exposed to a radiant heat source. The calorimeter is designed to be modular to be modular with multiple configurations while meeting emissivity and thermal mass requirements via a variable thermal mass. The results of the incident heat flux and source temperature along with effective/apparent emissivity calculations are discussed.


2020 ◽  
pp. 073490412095860
Author(s):  
Hong-Seok Yun ◽  
Ho-Sik Han ◽  
Cheol-Hong Hwang

This study proposes a new reduced-size plate thermometer with a modified shape and improved insulation performance in order to resolve problems commonly found when using conventional plate thermometers to measure incident heat flux in fire environments, for example, a low spatial resolution caused by the large plate area and a non-uniform temperature distribution on the plate. The main results of this study showed that the new plate thermometer exhibits high spatial temperature uniformity, and that the plate thermometer can be reduced in size to 30 mm. Moreover, it was found that the relative error of the incident heat flux of the plate thermometer was substantially reduced compared to that of a heat flux meter using a conduction correction factor expressed as a third-order polynomial function of heat flux, rather than using an average empirical constant calculated from measurement over a wide range of heat fluxes. Finally, it was confirmed that the incident heat flux measured by the new reduced-size plate thermometer in a heptane pool fire was in good agreement with the heat flux meter measurements during the rapid-fire growth, fully developed and decay phases of a fire.


2020 ◽  
Vol 34 (4) ◽  
pp. 13-21
Author(s):  
Sun-Woo Hwang ◽  
Won-Hee Park ◽  
Chang-Yong Kim

This study tested the wood used in building interiors; each type had various incident heat fluxes based on their thickness. The combustion characteristics measured were effective heat of combustion, heat release rate peak and arrival time, maximum average rate of heat emission, and piloted ignition temperature. The wood specimens used in the experiment were 4.8 to 18 mm thick. 25, 35, 50, and 60 kW/m<sup>2</sup> were applied to the incident heat flux that the wood specimens were exposed to. The wood specimens tested were two types of medium-density fiberboard (each with a different density), treated red pine, particle board, and plywood. A comprehensive comparison of different fire characteristics was conducted to analyze the fire patterns corresponding to each type of wood in this way, the risk of fire was studied. The risk of fire was particularly high for particle board. The results of quantifying the fire characteristics of the types of wood studied could function as important input data with which to calculate the fire load of composite combustibles.


Sign in / Sign up

Export Citation Format

Share Document