global geopotential model
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 936 (1) ◽  
pp. 012034
Author(s):  
Hamidatul Aminah ◽  
Ira Mutiara Anjasmara

Abstract Geoid model was chosen as a vertical reference in Indonesia based on the Head of the Geospatial Information Agency Regulation (Perka BIG) No. 15 of 2013 concerning the Indonesian Geospatial Reference System (SRGI2013). Therefore, the development of local geoid models continues to be carried out to obtain good accuracy. The geoid is formed through three main components: long wave, short wave, and medium wave. One of the longwave components is the global geopotential model obtained from topographic, terrestrial, altimetry, and gravity satellite data. Along with the development of technology and gravity observation methods, the global model has many variations, so it is necessary to determine the global model that is most suitable for the geographical conditions in Indonesia. EGM2008 is often used in local geoid modeling in Indonesia based on research that compares several global models. Still, it does not rule out the possibility of a new global model that is more suitable for Indonesia.


Author(s):  
Nur Sofia Erina Ariff ◽  
Adolfientje Kasenda Olesen ◽  
Norehan Md Yaacob ◽  
Saiful Aman Hj Sulaiman

Author(s):  
Shuib Rambat ◽  
◽  
Nazirah Mohamad Abdullah ◽  
Norehan Yaacob ◽  
Nor’ Azizi Othman ◽  
...  

Gravity anomalies can yield an indirect but extremely useful picture of lateral changes in rock composition and structural patterns especially for rapid development area such as Johor region. The gravity anomalies can be derived from Global Geopotential Model (GGM) which is one of special product from the satellite technology that able to determine high accuracy of the earth’s gravity field. In this study, the gravity anomalies derived from recent GGM published by International Global Geopotential Model were compared with five other GGMs model that compromised either terrestrial or airborne or both to derive the gravity anomalies. In order to identify the best gravity model over the Johor region, two types of GGM class model has been selected for the comparisons which known as satellite only and combined class model. The result shows that the gravity anomalies de-rived from satellite only class model with up 300 spherical harmonic coefficients is the best fit model and can be used as a reference for the Johor region. The RSME for the recent GGM via satellite only were +/- 5.865 and +/- 3.347 mGal for terrestrial and airborne gravity anomalies respectively compared to other GGM.


2018 ◽  
Vol 12 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Hossam Talaat Elshambaky

AbstractOwing to the appearance of many global geopotential models, it is necessary to determine the most appropriate model for use in Egyptian territory. In this study, we aim to investigate three global models, namely EGM2008, EIGEN-6c4, and GECO. We use five mathematical transformation techniques, i.e., polynomial expression, exponential regression, least-squares collocation, multilayer feed forward neural network, and radial basis neural networks to make the conversion from regional geometrical geoid to global geoid models and vice versa. From a statistical comparison study based on quality indexes between previous transformation techniques, we confirm that the multilayer feed forward neural network with two neurons is the most accurate of the examined transformation technique, and based on the mean tide condition, EGM2008 represents the most suitable global geopotential model for use in Egyptian territory to date. The final product gained from this study was the corrector surface that was used to facilitate the transformation process between regional geometrical geoid model and the global geoid model.


Tehnika ◽  
2018 ◽  
Vol 73 (3) ◽  
pp. 333-338
Author(s):  
Oleg Odalović ◽  
Marko Stanković ◽  
Sanja Grekulović ◽  
Danilo Joksimović ◽  
Miljana Todorović-Drakul

2016 ◽  
Vol 46 (3) ◽  
pp. 179-202 ◽  
Author(s):  
Miroslava Majkráková ◽  
Juraj Papčo ◽  
Pavol Zahorec ◽  
Branislav Droščák ◽  
Ján Mikuška ◽  
...  

Abstract The vertical reference system in the Slovak Republic is realized by the National Levelling Network (NLN). The normal heights according to Molodensky have been introduced as reference heights in the NLN in 1957. Since then, the gravity correction, which is necessary to determine the reference heights in the NLN, has been obtained by an interpolation either from the simple or complete Bouguer anomalies. We refer to this method as the “original”. Currently, the method based on geopotential numbers is the preferred way to unify the European levelling networks. The core of this article is an analysis of different ways to the gravity determination and their application for the calculation of geopotential numbers at the points of the NLN. The first method is based on the calculation of gravity at levelling points from the interpolated values of the complete Bouguer anomaly using the CBA2G_SK software. The second method is based on the global geopotential model EGM2008 improved by the Residual Terrain Model (RTM) approach. The calculated gravity is used to determine the normal heights according to Molodensky along parts of the levelling lines around the EVRF2007 datum point EH-V. Pitelová (UELN-1905325) and the levelling line of the 2nd order NLN to Kráľova hoľa Mountain (the highest point measured by levelling). The results from our analysis illustrate that the method based on the interpolated value of gravity is a better method for gravity determination when we do not know the measured gravity. It was shown that this method is suitable for the determination of geopotential numbers and reference heights in the Slovak national levelling network at the points in which the gravity is not observed directly. We also demonstrated the necessity of using the precise RTM for the refinement of the results derived solely from the EGM2008.


Sign in / Sign up

Export Citation Format

Share Document