corinth gulf
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Rodolfo Console ◽  
Roberto Carluccio ◽  
Maura Murru ◽  
Eleftheria Papadimitriou ◽  
Vassilis Karakostas

ABSTRACT A physics-based earthquake simulation algorithm for modeling the long-term spatiotemporal process of strong (M ≥ 6.0) earthquakes in Corinth Gulf area, Greece, is employed and its performance is explored. The underlying physical model includes the rate- and state-dependent frictional formulation, along with the slow tectonic loading and coseismic static stress transfer. The study area constitutes a rapidly extending rift about 100 km long, where the deformation is taken up by eight major fault segments aligned along its southern coastline, and which is associated with several strong (M ≥ 6.0) earthquakes in the last three centuries, since when the historical earthquake catalog is complete. The recurrence time of these earthquakes and their spatial relation are studied, and the simulator results reveal spatiotemporal properties of the regional seismicity such as pseudoperiodicity as well as multisegment ruptures of strong earthquakes. As the simulator algorithm allows the display of the stress pattern on all the single elements of the fault, we are focusing on the time evolution of the stress level before, during, and after these earthquakes occur. In this respect, the spatiotemporal variation of the stress and its heterogeneity appear to be correlated with the process of preparation of strong earthquakes in a quantitative way.


Author(s):  
Maria Tsoni ◽  
George Iliopoulos ◽  
Dimitra Valavani ◽  
Eleni Liapi ◽  
Penelope Papadopoulou ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Anna Karkani ◽  
Giannis Saitis ◽  
Konstantinos Tsanakas ◽  
Niki Evelpidou ◽  
Efthimios Karymbalis ◽  
...  

<p>The study of environmental changes in coastal areas provide useful information for past conditions and constitute a powerful tool for accurate palaeogeographic reconstructions. Several coastal landforms are present on the coastal zone, with different response to environmental change. Coastal wetlands and lagoons are particularly sensitive to local paleoenvironmental changes and provide an excellent opportunity to reconstruct the evolution of the coastal zone evolution and the sea level changes. In this context, the aim of this work is to elucidate the coastal evolution of Psatha bay, Alkyonides Gulf, Greece, through coastal drillings and geomorphological sea level markers.</p><p>The study area is located at the eastern end of Corinth Gulf, in the Gulf of Alkyonides. Psatha is bounded by active neotectonic structures, which have been a determining factor in its development. In this work we adopt a multiproxy approach through the study of coastal drillings and beachrocks, and micro-topography constructed after photogrammetric processing of very high resolution and accuracy images acquired by several Unmanned Aerial System flights. We coupled detailed beachrock mapping, microstratigraphic analysis and luminescence dating to study beachrock outcrops found up to 1 m above the present sea-level. For the palaeoenvironmental reconstruction, multiproxy analyses were undertaken, which included sedimentological analysis of the core, paleontological analysis of macrofauna and microfauna and radiocarbon dating. The results of this work will contribute to the better understanding of a coastal site in a tectonically active area and the relative sea level changes.</p>


2021 ◽  
Author(s):  
Louis De Barros ◽  
Pierre Dublanchet ◽  
Frédéric Cappa ◽  
Anne Deschamps

<p>Fluid induced earthquake sequences generally appear as expanding swarms activating a particular fault. Such swarms are generally interpreted as fluid diffusion, which ignores the possibility of static, dynamic or aseismic triggering, and the existence of rapid migration. Here, we study the temporal evolution of a seismic swarm that occurred over a 10-day period in October 2015 in the extensional rift of the Corinth Gulf (Greece) using high-resolution earthquakes relocations. The seismicity radially migrates on a normal fault at a fluid diffusion velocity (~125 m/day). However, this migration occurs intermittently, with periods of fast expansion (2-to-10 km/day) during short seismic bursts alternating with quiescent periods. Moreover, the growing phases of the swarm illuminate a high number of repeaters. Therefore, we propose a new model to explain the combination of multiple driving processes for such swarms.  Fluid up flow in the fault may induce aseismic slip episodes, separated by phases of fluid pressure build-up. The stress perturbation due to aseismic slip may activate small asperities in the fault that produce bursts of seismicity during the most intense phase of the swarm. We then validated this model through hydro-mechanical modeling, where earthquakes consist in the failure of asperities on a creeping fault infiltrated by fluid. For that, we couple rate‐and‐state friction, non‐linear diffusivity and elasticity along a 1D interface. This model reproduces the dual migration speeds observed in real swarms. We show that migration speeds increase linearly with the mean pressurization, and are not dependent on the hydraulic diffusivity, as traditionally suggested.</p>


2020 ◽  
Vol 10 (22) ◽  
pp. 8273
Author(s):  
Alexandros Emmanouilidis ◽  
Ingmar Unkel ◽  
Joana Seguin ◽  
Kleoniki Keklikoglou ◽  
Eleni Gianni ◽  
...  

During the last few decades, X-ray attenuation systems have been established as standard techniques in geosciences and as excellent scientific tools for the analysis of sedimentary facies and structures. In the present study, we use two non-destructive and high-resolution systems (computed tomography, X-ray fluorescence) to address all sedimentological facies and structural characteristics on a 6 m long, partly laminated sediment record, from Vouliagmeni lake, located at the eastern part of the Corinth Gulf, Greece. Vouliagmeni lake is the deepest coastal lake in Greece, and its location is of great importance since it is located in one of the most tectonically active regions in the world. The chronological framework of the retrieved sediment sequence spans the last 12,000 years, with alternations of laminated and non-laminated sections. The annual accumulation of the laminated sequences was determined through the radionuclide concentration of 14 samples. Scanning tomography was performed with a medical CT scanner and a μCT scanner, aiming to compare the potentials and variations of both methods. Lamination boundaries, event layers (turbidites) and sediment deformations were distinguished through processing the extracted 3D rendered volumes, after applying ranges depending on Hounsfield (HU) values. Microscopic analysis revealed three main layer types in the varve sequences that were examined, attributing to summer/spring, autumn and winter deposits. Statistical analysis of the elemental composition, magnetic susceptibility (MS) measurements and HU values revealed three clusters/facies, reflecting climatic and in-lake hydrological changes. Cluster A emulates sedimentation during arid conditions, while Cluster B reflects humid conditions with increased precipitation and erosion. Cluster C represents sequences with homogenous Ca-rich sediment. Our proposed workflow highlights the possible correlation between the non-destructive variables that were measured, but also the variations and applications of each method and software used during this study.


2020 ◽  
Vol 47 (9) ◽  
Author(s):  
Louis De Barros ◽  
Frédéric Cappa ◽  
Anne Deschamps ◽  
Pierre Dublanchet

Sign in / Sign up

Export Citation Format

Share Document