kinetic spectrophotometry
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Elena G. Kulapina ◽  
◽  
Olga I. Kulapina ◽  
Vlada D. Ankina ◽  
◽  
...  

The 1st generation cefalexine-cephalosporine antibiotic is used in the treatment of various infectious diseases. Spectrophotometry, kinetic spectrophotometry, spectrofluorimetry are proposed to determination of cefalexine in medicine and biological environment. Planar screenprinted sensors allow analyzing the micro-volumes of samples, which is important for the analysis of biological objects without preliminary samplepreparation. Depending on the active material and modifiers, you can create planar sensors for the determination of different organic compounds. In this work we have studied the influence of the nature of electroactive compounds and modifiers on the electroanalytic properties of planar cefalexine-selective sensors. Associates of tetradecylammonium and dimethyldistearylammonium with complex compounds silver (1) – cefalexine (Ceas = 1–3%), polyaniline modifiers and cupric oxide nanoparticles have been used as active components, the ratio EAS: modifier is 1:1. The main electroanalytic and operational characteristics of cefalexine-selective sensors in aqueous solutions and on the background of oral fluid are determined. Advantage of tetradecylammonium in active components of cefalexine-selective sensors is shown. For cefalexine- sensors, the optimal is: linearity interval 1·10-2 – 1·10-4, response time 20–25 seconds, for unmodified: 10–15 sec, for modified in 1·10-2 M solutions of cefalexine, service life – 1 month. Modifiers approximate angular coefficients of electrode functions to theoretical values for single-charge ions, reduce response time and drift of potential, reduce the detection limit of cefalexine. Sensors are used for the determination of cephalexine in model aqueous solutions and oral fluid with added antibiotic additives, in expired cephalexine preparations.


2021 ◽  
Vol 71 (4) ◽  
pp. 619-630
Author(s):  
Lea Kukoc-Modun ◽  
Maja Biocic ◽  
Njegomir Radić

Abstract A novel and simple method for the determination of penicillamine (PEN), tiopronin (mercaptopropionyl glycine, MPG) and glutathione (GSH) in pharmaceutical formulations by kinetic spectrophotometry has been developed and validated. It is based on the redox reaction where the thiol compound (RSH) reduces CuII-neocuproine complex to CuI-neocuproine complex. The non-steady state signal of the formed CuI- neocuproine complex is measured at 458 nm. The initial rate and fixed time (at 1 min) methods were validated. The calibration graph was linear in the concentration range from 8.0 × 10‒7 to 8.0 × 10‒5 mol L−1 for the initial rate method and from 6.0 × 10‒7 to 6.0 × 10−5 mol L−1 for the fixed time method, with the detection limits of 2.4 × 10−7 and 1.4 × 10‒7 mol L−1, resp. Levels of PEN, MPG and GSH in pharmaceutical formulations were successfully assayed by both methods. The advantages of the presented methods include sensitivity, short analysis time, ease of application and low cost.


2019 ◽  
Vol 44 (4) ◽  
pp. 57 ◽  
Author(s):  
Ramazan Gürkan ◽  
Nevalnur Zeynep Gürkan

In this work, a new kinetic method is described for the determination of trace Se(IV) in natural spring waters and commercial tea samples. The method is based on the activation of Se(IV) onto the indicator reaction in acidic medium. The reaction was monitored using a fixed time approach of 20 min at 680 nm. The variables affecting the reaction rate were evaluated and optimized. The method allows the determination of Se(IV) in the range of 0.0125-1.0 mg L-1 with a detection limit of 3.6 µg L-1. The precision was in range of 0.63-3.15% (as RSD %) with a higher recovery than 98.6%. The method has been found to be selective against matrix effect. The method was applied to the speciation analysis of inorganic Se species present in the selected samples. The method was statistically validated by analysis of two certified samples and comparing the obtained results to those of HG-AAS analysis. Also, the total Se levels of the samples were determined by using both methods after conversion of Se(VI) into Se(IV) in ultrasonic bath in acidic medium for 30 min at 85-90 °C. The results were in good agreement with those of HG-AAS. The Se(VI) level of the samples was calculated from the difference between amounts of total Se and Se(IV).


Sign in / Sign up

Export Citation Format

Share Document