scholarly journals Note on $ r $-central Lah numbers and $ r $-central Lah-Bell numbers

2022 ◽  
Vol 7 (2) ◽  
pp. 2929-2939
Author(s):  
Hye Kyung Kim ◽  

<abstract><p>The $ r $-Lah numbers generalize the Lah numbers to the $ r $-Stirling numbers in the same sense. The Stirling numbers and the central factorial numbers are one of the important tools in enumerative combinatorics. The $ r $-Lah number counts the number of partitions of a set with $ n+r $ elements into $ k+r $ ordered blocks such that $ r $ distinguished elements have to be in distinct ordered blocks. In this paper, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers ($ r\in \mathbb{N} $) are introduced parallel to the $ r $-extended central factorial numbers of the second kind and $ r $-extended central Bell polynomials. In addition, some identities related to these numbers including the generating functions, explicit formulas, binomial convolutions are derived. Moreover, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers are shown to be represented by Riemann integral, respectively.</p></abstract>

Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 724 ◽  
Author(s):  
Dae San Kim ◽  
Han Young Kim ◽  
Dojin Kim ◽  
Taekyun Kim

Here we would like to introduce the extended r-central incomplete and complete Bell polynomials, as multivariate versions of the recently studied extended r-central factorial numbers of the second kind and the extended r-central Bell polynomials, and also as multivariate versions of the r- Stirling numbers of the second kind and the extended r-Bell polynomials. In this paper, we study several properties, some identities and various explicit formulas about these polynomials and their connections as well.


Author(s):  
Feng Qi ◽  
Da-Wei Niu ◽  
Dongkyu Lim ◽  
Bai-Ni Guo

In the paper, the authors present unified generalizations for the Bell numbers and polynomials, establish explicit formulas and inversion formulas for these generalizations in terms of the Stirling numbers of the first and second kinds with the help of the Fa&agrave; di Bruno formula, properties of the Bell polynomials of the second kind, and the inversion theorem connected with the Stirling numbers of the first and second kinds, construct determinantal and product inequalities for these generalizations with aid of properties of the completely monotonic functions, and derive the logarithmic convexity for the sequence of these generalizations.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 309-320 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad Cakic ◽  
F.A. Shiha

In this paper we give a new family of numbers, called ??-Whitney numbers, which gives generalization of many types of Whitney numbers and Stirling numbers. Some basic properties of these numbers such as recurrence relations, explicit formulas and generating functions are given. Finally many interesting special cases are derived.


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4833-4844 ◽  
Author(s):  
Eda Yuluklu ◽  
Yilmaz Simsek ◽  
Takao Komatsu

The aim of this paper is to give some new identities and relations related to the some families of special numbers such as the Bernoulli numbers, the Euler numbers, the Stirling numbers of the first and second kinds, the central factorial numbers and also the numbers y1(n,k,?) and y2(n,k,?) which are given Simsek [31]. Our method is related to the functional equations of the generating functions and the fermionic and bosonic p-adic Volkenborn integral on Zp. Finally, we give remarks and comments on our results.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 288 ◽  
Author(s):  
Taekyun Kim ◽  
Dae Kim ◽  
Gwan-Woo Jang

In this paper, we introduce central complete and incomplete Bell polynomials which can be viewed as generalizations of central Bell polynomials and central factorial numbers of the second kind, and also as ’central’ analogues for complete and incomplete Bell polynomials. Further, some properties and identities for these polynomials are investigated. In particular, we provide explicit formulas for the central complete and incomplete Bell polynomials related to central factorial numbers of the second kind.


Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 112 ◽  
Author(s):  
Irem Kucukoglu ◽  
Burcin Simsek ◽  
Yilmaz Simsek

The aim of this paper is to construct generating functions for new families of combinatorial numbers and polynomials. By using these generating functions with their functional and differential equations, we not only investigate properties of these new families, but also derive many new identities, relations, derivative formulas, and combinatorial sums with the inclusion of binomials coefficients, falling factorial, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), the Poisson–Charlier polynomials, combinatorial numbers and polynomials, the Bersntein basis functions, and the probability distribution functions. Furthermore, by applying the p-adic integrals and Riemann integral, we obtain some combinatorial sums including the binomial coefficients, falling factorial, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), and the Cauchy numbers (or the Bernoulli numbers of the second kind). Finally, we give some remarks and observations on our results related to some probability distributions such as the binomial distribution and the Poisson distribution.


Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 931-943 ◽  
Author(s):  
B. El-Desouky ◽  
F.A. Shiha ◽  
Ethar Shokr

In this paper, we define the multiparameter r-Whitney numbers of the first and second kind. The recurrence relations, generating functions , explicit formulas of these numbers and some combinatorial identities are derived. Some relations between these numbers and generalized Stirling numbers of the first and second kind, Lah numbers, C-numbers and harmonic numbers are deduced. Furthermore, some interesting special cases are given. Finally matrix representation for these relations are given.


Filomat ◽  
2018 ◽  
Vol 32 (20) ◽  
pp. 6879-6891
Author(s):  
Irem Kucukoglu ◽  
Yilmaz Simsek

The first aim of this paper is to give identities and relations for a new family of the combinatorial numbers and the Apostol-Euler type numbers of the second kind, the Stirling numbers, the Apostol-Bernoulli type numbers, the Bell numbers and the numbers of the Lyndon words by using some techniques including generating functions, functional equations and inversion formulas. The second aim is to derive some derivative formulas and combinatorial sums by applying derivative operators including the Caputo fractional derivative operators. Moreover, we give a recurrence relation for the Apostol-Euler type numbers of the second kind. By using this recurrence relation, we construct a computation algorithm for these numbers. In addition, we derive some novel formulas including the Stirling numbers and other special numbers. Finally, we also some remarks, comments and observations related to our results.


2010 ◽  
Vol 4 (2) ◽  
pp. 284-308 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Stephan Wagner

A partition ? of the set [n] = {1, 2,...,n} is a collection {B1,...,Bk} of nonempty disjoint subsets of [n] (called blocks) whose union equals [n]. Suppose that the subsets Bi are listed in increasing order of their minimal elements and ? = ?1, ?2...?n denotes the canonical sequential form of a partition of [n] in which iEB?i for each i. In this paper, we study the generating functions corresponding to statistics on the set of partitions of [n] with k blocks which record the total number of positions of ? between adjacent occurrences of a letter. Among our results are explicit formulas for the total value of the statistics over all the partitions in question, for which we provide both algebraic and combinatorial proofs. In addition, we supply asymptotic estimates of these formulas, the proofs of which entail approximating the size of certain sums involving the Stirling numbers. Finally, we obtain comparable results for statistics on partitions which record the total number of positions of ? of the same letter lying between two letters which are strictly larger.


2017 ◽  
Vol 15 (1) ◽  
pp. 1606-1617 ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Gwan-Woo Jang ◽  
Lee Chae Jang

AbstractIn 1859, Cayley introduced the ordered Bell numbers which have been used in many problems in number theory and enumerative combinatorics. The ordered Bell polynomials were defined as a natural companion to the ordered Bell numbers (also known as the preferred arrangement numbers). In this paper, we study Fourier series of functions related to higher-order ordered Bell polynomials and derive their Fourier series expansions. In addition, we express each of them in terms of Bernoulli functions.


Sign in / Sign up

Export Citation Format

Share Document