scholarly journals New Properties on Degenerate Bell Polynomials

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Hyunseok Lee ◽  
Seongho Park ◽  
Jongkyum Kwon

The aim of this paper is to study the degenerate Bell numbers and polynomials which are degenerate versions of the Bell numbers and polynomials. We derive some new identities and properties of those numbers and polynomials that are associated with the degenerate Stirling numbers of both kinds.

2022 ◽  
Vol 7 (2) ◽  
pp. 2929-2939
Author(s):  
Hye Kyung Kim ◽  

<abstract><p>The $ r $-Lah numbers generalize the Lah numbers to the $ r $-Stirling numbers in the same sense. The Stirling numbers and the central factorial numbers are one of the important tools in enumerative combinatorics. The $ r $-Lah number counts the number of partitions of a set with $ n+r $ elements into $ k+r $ ordered blocks such that $ r $ distinguished elements have to be in distinct ordered blocks. In this paper, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers ($ r\in \mathbb{N} $) are introduced parallel to the $ r $-extended central factorial numbers of the second kind and $ r $-extended central Bell polynomials. In addition, some identities related to these numbers including the generating functions, explicit formulas, binomial convolutions are derived. Moreover, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers are shown to be represented by Riemann integral, respectively.</p></abstract>


Author(s):  
Feng Qi ◽  
Da-Wei Niu ◽  
Dongkyu Lim ◽  
Bai-Ni Guo

In the paper, the authors present unified generalizations for the Bell numbers and polynomials, establish explicit formulas and inversion formulas for these generalizations in terms of the Stirling numbers of the first and second kinds with the help of the Fa&agrave; di Bruno formula, properties of the Bell polynomials of the second kind, and the inversion theorem connected with the Stirling numbers of the first and second kinds, construct determinantal and product inequalities for these generalizations with aid of properties of the completely monotonic functions, and derive the logarithmic convexity for the sequence of these generalizations.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Lee-Chae Jang ◽  
Hyunseok Lee ◽  
Han-Young Kim

AbstractThe nth r-extended Lah–Bell number is defined as the number of ways a set with $n+r$ n + r elements can be partitioned into ordered blocks such that r distinguished elements have to be in distinct ordered blocks. The aim of this paper is to introduce incomplete r-extended Lah–Bell polynomials and complete r-extended Lah–Bell polynomials respectively as multivariate versions of r-Lah numbers and the r-extended Lah–Bell numbers and to investigate some properties and identities for these polynomials. From these investigations we obtain some expressions for the r-Lah numbers and the r-extended Lah–Bell numbers as finite sums.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1086 ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Hyunseok Lee ◽  
Jongkyum Kwon

Recently, the partially degenerate Bell polynomials and numbers, which are a degenerate version of Bell polynomials and numbers, were introduced. In this paper, we consider the new type degenerate Bell polynomials and numbers, and obtain several expressions and identities on those polynomials and numbers. In more detail, we obtain an expression involving the Stirling numbers of the second kind and the generalized falling factorial sequences, Dobinski type formulas, an expression connected with the Stirling numbers of the first and second kinds, and an expression involving the Stirling polynomials of the second kind.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 144 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

The main aim of this paper is to introduce the degenerate truncated forms of multifarious special polynomials and numbers and is to investigate their various properties and relationships by using the series manipulation method and diverse special proof techniques. The degenerate truncated exponential polynomials are first considered and their several properties are given. Then the degenerate truncated Stirling polynomials of the second kind are defined and their elementary properties and relations are proved. Also, the degenerate truncated forms of the bivariate Fubini and Bell polynomials and numbers are introduced and various relations and formulas for these polynomials and numbers, which cover several summation formulas, addition identities, recurrence relationships, derivative property and correlations with the degenerate truncated Stirling polynomials of the second kind, are acquired. Thereafter, the truncated degenerate Bernoulli and Euler polynomials are considered and multifarious correlations and formulas including summation formulas, derivation rules and correlations with the degenerate truncated Stirling numbers of the second are derived. In addition, regarding applications, by introducing the degenerate truncated forms of the classical Bernstein polynomials, we obtain diverse correlations and formulas. Some interesting surface plots of these polynomials in the special cases are provided.


Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 112 ◽  
Author(s):  
Irem Kucukoglu ◽  
Burcin Simsek ◽  
Yilmaz Simsek

The aim of this paper is to construct generating functions for new families of combinatorial numbers and polynomials. By using these generating functions with their functional and differential equations, we not only investigate properties of these new families, but also derive many new identities, relations, derivative formulas, and combinatorial sums with the inclusion of binomials coefficients, falling factorial, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), the Poisson–Charlier polynomials, combinatorial numbers and polynomials, the Bersntein basis functions, and the probability distribution functions. Furthermore, by applying the p-adic integrals and Riemann integral, we obtain some combinatorial sums including the binomial coefficients, falling factorial, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), and the Cauchy numbers (or the Bernoulli numbers of the second kind). Finally, we give some remarks and observations on our results related to some probability distributions such as the binomial distribution and the Poisson distribution.


Sign in / Sign up

Export Citation Format

Share Document