scholarly journals A Multigrid Dynamic Bidirectional Coupled Surface Flow Routing Model for Flood Simulation

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3454
Author(s):  
Yanxia Shen ◽  
Chunbo Jiang ◽  
Qi Zhou ◽  
Dejun Zhu ◽  
Di Zhang

Surface flow routing is an important component in hydrologic and hydrodynamic research. Based on a literature review and comparing the different coupling models (the hydrologic model and hydrodynamic model), a multigrid dynamic bidirectional coupled surface flow routing model (M-DBCM), consisting of diffusion wave equations (DWEs) and shallow water equations (SWEs), is proposed herein based on grids with different resolutions. DWEs were applied to obtain runoff routing in coarse grid regions to improve the computational efficiency, while the DWEs and SWEs were bidirectionally coupled to detail the flood dynamics in fine grid regions to obtain good accuracy. In fine grid zones, the DWEs and SWEs were connected by an internal moving boundary, which ensured the conservation of mass and momentum through the internal moving boundary. The DWEs and SWEs were solved by using the time explicit scheme, and different time steps were adopted in regions with different grid sizes. The proposed M-DBCM was validated via three cases, and the results showed that the M-DBCM can effectively simulate the process of surface flow routing, which had reliable computational efficiency while maintaining satisfactory simulation accuracy. The rainfall runoff in the Goodwin Creek Watershed was simulated based on the proposed M-DBCM. The results showed that the discharge hydrographs simulated by the M-DBCM were closer to the measured data, and the simulation results were more realistic and reliable, which will be useful in assisting flood mitigation and management.

2020 ◽  
Vol 62 (2) ◽  
pp. 159-169
Author(s):  
Shino Sakaguchi ◽  
Keisuke Nakayama ◽  
Thuy Thi Thu Vu ◽  
Katsuaki Komai ◽  
Peter Nielsen

2015 ◽  
Vol 19 (2) ◽  
pp. 857-876 ◽  
Author(s):  
S. Wi ◽  
Y. C. E. Yang ◽  
S. Steinschneider ◽  
A. Khalil ◽  
C. M. Brown

Abstract. This study tests the performance and uncertainty of calibration strategies for a spatially distributed hydrologic model in order to improve model simulation accuracy and understand prediction uncertainty at interior ungaged sites of a sparsely gaged watershed. The study is conducted using a distributed version of the HYMOD hydrologic model (HYMOD_DS) applied to the Kabul River basin. Several calibration experiments are conducted to understand the benefits and costs associated with different calibration choices, including (1) whether multisite gaged data should be used simultaneously or in a stepwise manner during model fitting, (2) the effects of increasing parameter complexity, and (3) the potential to estimate interior watershed flows using only gaged data at the basin outlet. The implications of the different calibration strategies are considered in the context of hydrologic projections under climate change. To address the research questions, high-performance computing is utilized to manage the computational burden that results from high-dimensional optimization problems. Several interesting results emerge from the study. The simultaneous use of multisite data is shown to improve the calibration over a stepwise approach, and both multisite approaches far exceed a calibration based on only the basin outlet. The basin outlet calibration can lead to projections of mid-21st century streamflow that deviate substantially from projections under multisite calibration strategies, supporting the use of caution when using distributed models in data-scarce regions for climate change impact assessments. Surprisingly, increased parameter complexity does not substantially increase the uncertainty in streamflow projections, even though parameter equifinality does emerge. The results suggest that increased (excessive) parameter complexity does not always lead to increased predictive uncertainty if structural uncertainties are present. The largest uncertainty in future streamflow results from variations in projected climate between climate models, which substantially outweighs the calibration uncertainty.


2013 ◽  
Vol 347-350 ◽  
pp. 2173-2177
Author(s):  
Jia Hua Zhang ◽  
Chi Zhang

in the 2-d numerical simulation of flash flood disaster, due to flood often occurred in the steep terrain and water flow rapidly changed, lead to that the calculated value is unstable and even the calculation diverge in the simulation. This paper presents a grid outflow correction method, which is based on the leap-frog finite difference format, through modifying the outflow rate of the grid circularly, to ensure the mass conservation in the whole process of computing. In the local dam bursting model, the simulated result comparison of the grid outflow correction method and the algorithm of implicit alternating direction on the mass conservation shows that, the new method can ensure the simulation accuracy and the numerical stability under the condition of steep terrain and moving boundary. According to the proposed method, the simulation analysis in the process of extreme flash flood disasters which happened in 2010 Zhouqu county in Gansu province was carried out. The comparison of simulation results and remote sensing estimation results shows that the deviation of the flood evolution time, speed and impact height are within 5%, and the consistency of evolution path is good, which verifies the validity of the algorithm.


Author(s):  
Philippe H. Trinh

The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel.


2014 ◽  
Vol 11 (9) ◽  
pp. 10273-10317 ◽  
Author(s):  
S. Wi ◽  
Y. C. E. Yang ◽  
S. Steinschneider ◽  
A. Khalil ◽  
C. M. Brown

Abstract. This study utilizes high performance computing to test the performance and uncertainty of calibration strategies for a spatially distributed hydrologic model in order to improve model simulation accuracy and understand prediction uncertainty at interior ungaged sites of a sparsely-gaged watershed. The study is conducted using a distributed version of the HYMOD hydrologic model (HYMOD_DS) applied to the Kabul River basin. Several calibration experiments are conducted to understand the benefits and costs associated with different calibration choices, including (1) whether multisite gaged data should be used simultaneously or in a step-wise manner during model fitting, (2) the effects of increasing parameter complexity, and (3) the potential to estimate interior watershed flows using only gaged data at the basin outlet. The implications of the different calibration strategies are considered in the context of hydrologic projections under climate change. Several interesting results emerge from the study. The simultaneous use of multisite data is shown to improve the calibration over a step-wise approach, and both multisite approaches far exceed a calibration based on only the basin outlet. The basin outlet calibration can lead to projections of mid-21st century streamflow that deviate substantially from projections under multisite calibration strategies, supporting the use of caution when using distributed models in data-scarce regions for climate change impact assessments. Surprisingly, increased parameter complexity does not substantially increase the uncertainty in streamflow projections, even though parameter equifinality does emerge. The results suggest that increased (excessive) parameter complexity does not always lead to increased predictive uncertainty if structural uncertainties are present. The largest uncertainty in future streamflow results from variations in projected climate between climate models, which substantially outweighs the calibration uncertainty.


2021 ◽  
Vol 64 (4) ◽  
pp. 1303-1318
Author(s):  
Kpoti M. Gunn ◽  
Anthony R. Buda ◽  
Heather E. Preisendanz ◽  
Raj Cibin ◽  
Casey D. Kennedy ◽  
...  

HighlightsWe used SWAT-VSA to assess the effects of climate change with rising CO2 on the water balance of a karst basin.For future climate, SWAT-VSA with rising CO2 yielded 7.1% less ET and 6.3% more runoff than standard SWAT-VSA.Rising CO2 also affected variable source areas, with greater ET declines and runoff increases in the wettest soils.Findings suggest CO2 effects on water balance should be included in future climate change studies with SWAT-VSA.Abstract. Characterizing the effects of climate change on hydrology is important to watershed management. In this study, we used SWAT-VSA to examine the effects of climate change and increasing atmospheric CO2 (CO2) on the water balance of Spring Creek watershed, a mixed land-use karst basin in the Upper Chesapeake Bay watershed. First, we modified the stomatal conductance and leaf area index (LAI) routines of SWAT-VSA’s Penman-Monteith evapotranspiration (ET) procedure and enabled the model to accept daily CO2 data. Using downscaled climate projections from nine global climate models (GCMs), we then compared water balance estimations from baseline SWAT-VSA against two modified versions of SWAT-VSA. One SWAT-VSA version integrated daily CO2 levels (SWAT-VSA_CO2), while another version added flexible stomatal conductance and LAI routines (SWAT-VSA_CO2+Plant) to the dynamic CO2 capacity. Under current climate (1985-2015), the three SWAT-VSA models produced generally similar water balance estimations, with 51% of precipitation lost to ET and the remainder converted to runoff (10%), lateral flow (9%), and percolate (30%). For future climate (2020-2065), water balance simulations diverged between baseline SWAT-VSA and the two modified SWAT-VSA models with CO2. Notably, variable stomatal conductance and LAI routines produced no detectable effects beyond that of CO2. For the 2020-2065 period, baseline SWAT-VSA projected ET increases of 0.7 mm year-1, while SWAT-VSA models with CO2 suggested that annual ET could decline by approximately -0.4 mm year-1 over the same period. As a result, the two CO2-based SWAT-VSA models predicted streamflow increases of almost 1.6 mm year-1 over the 2020-2065 period, which were roughly double the streamflow increases projected by baseline SWAT-VSA. In general, SWAT-VSA models with CO2 effects produced 22.4% more streamflow in 2045-2065 than the SWAT-VSA model without CO2. Results also showed that adding daily CO2 to SWAT-VSA reduced ET in wetter parts of Spring Creek watershed, leading to greater runoff losses from variable source areas compared to baseline SWAT-VSA. Findings from the study highlight the importance of considering increasing atmospheric CO2 concentrations in water balance simulations with SWAT-VSA in order to gain a fuller appreciation of the hydrologic uncertainties with climate change. Keywords: Carbon dioxide, Climate change, Hydrologic model, Water balance, Watershed.


2010 ◽  
Vol 7 (2) ◽  
pp. 2121-2155 ◽  
Author(s):  
A. J. MacLean ◽  
B. A. Tolson ◽  
F. R. Seglenieks ◽  
E. Soulis

Abstract. The spatially distributed MESH hydrologic model (Pietroniro et al., 2007) was successfully calibrated and then validated for the prediction of snow water equivalent (SWE) and streamflow in the Reynolds Creek Experimental Watershed in Idaho, USA. The tradeoff between fitting to SWE versus streamflow data was assessed and showed that both could be simultaneously predicted with good quality by the MESH model. Not surprisingly, calibrating to only one objective (e.g. SWE) yielded poor simulation results for the other objective (e.g. streamflow). The multiobjective calibration problem in this study was efficiently solved via a simple weighted objective function approach and analyses showed that the approach yielded a balanced solution between the objectives. Our approach therefore eliminated the need to rely on a potentially more computationally intensive evolutionary multiobjective algorithm to approximate the entire tradeoff surface between objectives. Additional calibration experiments showed that for our calibration computational budget (2000 model evaluations), the autocalibration procedure would fail without being initialized to a model parameter set carefully determined for this specific case study. This study serves as a benchmark for MESH model simulation accuracy which can be compared with future versions of MESH.


2013 ◽  
Vol 15 (3) ◽  
pp. 315-323 ◽  

<p>In order to design a network of drainage canals, it is essential to consider the excess water from the agricultural land (overland flow) and to evaluate the characteristics of flow routing, such as the flow depths and discharges in the system of tertiary and main drainage canals of various order. In this paper models based on the Saint-Venant equations are presented, simulating the flow routing in a system of drainage canals. In these models, the lateral inflow towards tertiary drainage canals is the overland flow from adjacent fields. The Saint-Venant equations in their complete form (dynamic model) or in simplified forms, such as the diffusion wave equations (diffusion model) and the kinematic wave equations (kinematic model) are numerically solved by using the MacCormack explicit computational scheme which is a two-step predictor-corrector scheme, conditionally stable and convergent. In modeling flow through the system of drainage canals, emphasis was given to the simulation of flow at the junction points of two or more canals by applying the characteristic equations (negative and positive equations) in addition to the mass and energy conservation principles. Applications of the models for the simulation of flow within the system of drainage canals, subject to lateral inflow owing to overland flow, were also conducted in order to study the effect of various parameters of the drainage canals, on the hydrographs&rsquo; formation and also on the accuracy of the diffusion and kinematic equations in predicting flow in a drainage network.</p>


2019 ◽  
Author(s):  
Maral Razmand ◽  
Marcela Politano ◽  
Antonio Arenas Amado ◽  
Larry Webe

Sign in / Sign up

Export Citation Format

Share Document