topological relations
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 30)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
Matthew P. Dube

Topological relations and direction relations represent two pieces of the qualitative spatial reasoning triumvirate. Researchers have previously attempted to use the direction relation matrix to derive a topological relation, finding that no single direction relation matrix can isolate a particular topological relation. In this paper, the technique of topological augmentation is applied to the same problem, identifying a unique topological relation in 28.6% of all topologically augmented direction relation matrices, and furthermore achieving a reduction in a further 40.4% of topologically augmented direction relation matrices when compared to their vanilla direction relation matrix counterpart.


2021 ◽  
Vol 10 (10) ◽  
pp. 712
Author(s):  
Christian Zinke-Wehlmann ◽  
Amit Kirschenbaum

Geospatial linked data are an emerging domain, with growing interest in research and the industry. There is an increasing number of publicly available geospatial linked data resources, which can also be interlinked and easily integrated with private and industrial linked data on the web. The present paper introduces Geo-L, a system for the discovery of RDF spatial links based on topological relations. Experiments show that the proposed system improves state-of-the-art spatial linking processes in terms of mapping time and accuracy, as well as concerning resources retrieval efficiency and robustness.


Author(s):  
Xiongnan Jin ◽  
Sungkwang Eom ◽  
Sangjin Shin ◽  
Kyong-Ho Lee ◽  
Chaoqun Hong

Aethiopica ◽  
2021 ◽  
Vol 23 ◽  
Author(s):  
Gashaw Arutie Asaye

This paper intends to describe the semantics of locative adpositions in Amharic, a Semitic language spoken in Ethiopia. The analysis is based on elicited data that were collected by using Bowerman and Pederson’s (1992) topological relations picture series. The study shows that Amharic locative adpositions can convey specific and generic topological relations between the figure and ground entities. The specific locatives show a specific type of topological relations (for instance, verticality as in tatʃtʃ, below’, ‘under’; horizontality as in fit, ‘front’; containment as in wɨst’, ‘in’) between the figure and ground entities, but not the generic locatives. Aside from which, I argue that Amharic does not fit into Ameka and Levinson’s (2007) typology of locative predicates and constitutes a type of its own because it uses two copulas and a locative verb.


2021 ◽  
Vol 41 (I) ◽  
pp. 113-122
Author(s):  
N. LAZORENKO-HEVEL ◽  
◽  
Yu. KARPINKYI ◽  
D. KIN ◽  
◽  
...  

Purpose. The purpose of the article is to research the peculiarities of creation (updating) of digital topographic maps at the scale of 1:50 000/1:10 000 which would satisfy the requirements for the development of the seamless Topographic Database of the Main State Topographic Map at the scale of 1:50 000. Methodology. The basis for the research is the analysis of the possibilities of applying the theory of databases and knowledge bases, International Standards and specifications and vectorization method. Results. The article examines the peculiarities of creation (updating) digital topographic maps of the scale 1:50000 for the formation of the Main State Topographic Map of Ukraine for the purpose of the creation and maintain the seamless topographic database for national needs, which is located on the Geoportal to ensure the relevance of a single digital topographic basis by topographical monitoring of the territories and for the development of the National Spatial Data Infrastructure in Ukraine. The rules of topological relations between features of the digital topographic maps of the scale 1:50 000 are also defined and given. The peculiarities of providing automated quality control of updated digital topographic maps are investigated. The creation of the seamless Topographic Database of the Main State Topographic Map in the conditions of transfer the cartographic paradigm to geoinformation creates new requirements for the creation (updating) of digital topographic maps of the scale 1:50 000/10 000: creation of spatial schemes, description of the internal design of models and rules of digital description of geospatial features, unification of the features catalog and their attributes, as well as rules of topology between topographic features to ensure topological consistency of geometry in accordance with standards and specifications; creation of the “Validate” software package for checking of created (updated) digital topographic maps at a scale of 1:50 000/10 000 to ensure automated quality control of updated digital topographic maps; creation of new virtual and associated features in the TDB of the Main State Topographic Map. This will increase the intellectual level of geospatial data creation. Scientific novelty and practical significance. The creation of the Main Topographic Map Topographic Database takes into account the use of new virtual and associated features, the use of rules of topological relations between digital topographic map features, providing automated quality control of updated digital topographic maps.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Sergio Miguel-Tomé

Multifunctional Robot On Topological Notions (MROTN) is a research program that has as one of its goals to develop qualitative algorithms that make navigation decisions. This article presents new research from MROTN that extends previous results by allowing an agent to carry out qualitative reasoning about direction and spinning. The main result is a new heuristic, the Heuristic of Directional Qualitative Semantic (HDQS), which allows for selecting a spinning action to establish a directional relation between an agent and an object. The HDQS is based on the key idea of encoding directional information into topological relations. The new heuristic is important to the MROTN because it permits the continued development of qualitative navigation methods based on topological notions. We show this by presenting a new version of the Topological Qualitative Architecture of Navigation that uses the HDQS to address situations that require spinning.


2021 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Xiaoguang Zhou ◽  
Hongyuan He ◽  
Dongyang Hou ◽  
Rui Li ◽  
Heng Zheng

Refined topological relations play an important role in spatial database quality control. Currently, there is no unified and reasonable method to represent refined line/region and line/line topological relations in two-dimensional (2D) space. In addition, the existing independent line/region and line/line models have some drawbacks such as incomplete type discrimination and too many topological invariants. In this paper, a refined line/region and line/line topological relations are represented uniformly by the sequence, dimension, and topological type of the intersection components. To make the relevant definitions conform to the traditional cognitions in 2D Euclidean space, the (simple) spatial object is defined based on manifold topology, and the spatial intersection components are defined based on the whole-whole object intersection set. Then the topological invariant of node degree is introduced, and the adjacent point kinds (e.g., “Null”, “On”, “In”, and “Out”) are defined to distinguish the intersection component types. Excluding impossible and symmetrical types, 29 types of intersection-lines (including 21 between lines/regions and 8 between lines/lines), and 6 types of intersection-points (including 2 between lines/regions and 4 between lines/lines) are classified. On this basis, a node degree-based whole-whole object intersection sets (N-WWIS) model for refined line/region and line/line topological relations is presented, and it can be combined with the Euler number-based whole object intersection and difference (E-WID) model (coarse level) to form a hierarchical representation method of topological relations. Furthermore, a prototype system based on the N-WWIS model for automatic topological integrity checking is developed and some evaluation experiments are conducted with OpenStreetMap (OSM) data is presented based on the classification of intersection components. The experimental results show that the N-WWIS model will enable the geographic information systems (GIS) community to develop automated topological conflict checking and dealing tools for spatial data updates and quality control.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-20
Author(s):  
Isabelle Bloch

Abstract In many domains of information processing, such as knowledge representation, preference modeling, argumentation, multi-criteria decision analysis, spatial reasoning, both vagueness, or imprecision, and bipolarity, encompassing positive and negative parts of information, are core features of the information to be modeled and processed. This led to the development of the concept of bipolar fuzzy sets, and of associated models and tools, such as fusion and aggregation, similarity and distances, mathematical morphology. Here we propose to extend these tools by defining algebraic and topological relations between bipolar fuzzy sets, including intersection, inclusion, adjacency and RCC relations widely used in mereotopology, based on bipolar connectives (in a logical sense) and on mathematical morphology operators. These definitions are shown to have the desired properties and to be consistent with existing definitions on sets and fuzzy sets, while providing an additional bipolar feature. The proposed relations can be used for instance for preference modeling or spatial reasoning. They apply more generally to any type of functions taking values in a poset or a complete lattice, such as L-fuzzy sets.


Sign in / Sign up

Export Citation Format

Share Document