bipolar fuzzy sets
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 17)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
pp. 1-20
Author(s):  
Wen-Ran Zhang

The road from bipolar fuzzy sets to equilibrium-based mathematical abstraction is surveyed. A continuing historical debate on bipolarity and isomorphism is outlined. Related literatures are critically reviewed to counter plagiarism, distortion, renaming, and sophistry. Based on the debate, the term “isomorphistry” is coined. It is concluded that if isomorphism is used correctly it can be helpful in mathematics. If abused it may become isomorphistry—a kind of historical, socially constructed, entrenched, and “noble” hypocrisy hindering major scientific advances. It is shown that isomorphistry can be motivated by “denying” the originality of bipolar fuzzy sets and aimed at “justifying” plagiarism and distortion. Thus, isomorphistry is sophistry on isomorphism . Some (-,+)-bipolar isomorphistry behaviors are critiqued. YinYang vs. YangYin are distinguished. The geometrical and logical basis of equilibrium-based AI&QI computing machinery is introduced as a new computing paradigm with logically definable causality for mind-body unity. A philosophical joke on sophistry is appended.


Author(s):  
Shu Gong ◽  
Gang Hua ◽  
Wei Gao

AbstractBipolar fuzzy sets are used to describe the positive and negative of the uncertainty of objects, and the bipolar fuzzy graphs are used to characterize the structural relationship between uncertain concepts in which the vertices and edges are assigned positive and negative membership function values to feature the opposite uncertainty elevation. The dominating set is the control set of vertices in the graph structure and it occupies a critical position in graph analysis. This paper mainly contributes to extending the concept of domination in the fuzzy graph to the bipolar frameworks and obtaining the related expanded concepts of a variety of bipolar fuzzy graphs. Meanwhile, the approaches to obtain the specific dominating sets are presented. Finally, a numeral example on city data in Yunnan Province is presented to explain the computing of domination in bipolar fuzzy graph in the specific application.


2021 ◽  
Vol 41 (2) ◽  
pp. 3173-3181
Author(s):  
Pairote Yiarayong

The aim of this manuscript is to apply bipolar fuzzy sets for dealing with several kinds of theories in LA -semigroups. To begin with, we introduce the concept of 2-absorbing (quasi-2-absorbing) bipolar fuzzy ideals and strongly 2-absorbing (quasi-strongly 2-absorbing) bipolar fuzzy ideals in LA -semigroups, and investigate several related properties. In particular, we show that a bipolar fuzzy set A = ( μ A P , μ A N ) over an LA -semigroup S is weakly 2-absorbing if and only if [ B ⊙ C ] ⊙ D ⪯ A implies B ⊙ C ⪯ A or C ⊙ D ⪯ A or B ⊙ D ⪯ A for any bipolar fuzzy sets B = ( μ B P , μ B N ) , C = ( μ C P , μ C N ) and D = ( μ D P , μ D N ) . Also, we give some characterizations of quasi-strongly 2-absorbing bipolar fuzzy ideals over an LA -semigroup S by bipolar fuzzy points. In conclusion of this paper we prove that the relationship between quasi-strongly 2-absorbing bipolar fuzzy ideals over an LA -semigroup S and quasi-2-absorbing bipolar fuzzy ideals over S.


Author(s):  
Pairote Yiarayong

The aim of this manuscript is to apply bipolar fuzzy sets for dealing with several kinds of theories in LA -semigroups. To begin with, we introduce the concept of 2-absorbing (quasi-2-absorbing) bipolar fuzzy ideals and strongly 2-absorbing (quasi-strongly 2-absorbing) bipolar fuzzy ideals in LA -semigroups, and investigate several related properties. In particular, we show that a bipolar fuzzy set A = ( μ A P , μ A N ) over an LA -semigroup S is weakly 2-absorbing if and only if [ B ⊙ C ] ⊙ D ⪯ A implies B ⊙ C ⪯ A or C ⊙ D ⪯ A or B ⊙ D ⪯ A for any bipolar fuzzy sets B = ( μ B P , μ B N ) , C = ( μ C P , μ C N ) and D = ( μ D P , μ D N ) . Also, we give some characterizations of quasi-strongly 2-absorbing bipolar fuzzy ideals over an LA -semigroup S by bipolar fuzzy points. In conclusion of this paper we prove that the relationship between quasi-strongly 2-absorbing bipolar fuzzy ideals over an LA -semigroup S and quasi-2-absorbing bipolar fuzzy ideals over S.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 992
Author(s):  
Hanan Alolaiyan ◽  
Halimah A. Alshehri ◽  
Muhammad Haris Mateen ◽  
Dragan Pamucar ◽  
Muhammad Gulzar

A complex fuzzy set is a vigorous framework to characterize novel machine learning algorithms. This set is more suitable and flexible compared to fuzzy sets, intuitionistic fuzzy sets, and bipolar fuzzy sets. On the aspects of complex fuzzy sets, we initiate the abstraction of (α,β)-complex fuzzy sets and then define α,β-complex fuzzy subgroups. Furthermore, we prove that every complex fuzzy subgroup is an (α,β)-complex fuzzy subgroup and define (α,β)-complex fuzzy normal subgroups of given group. We extend this ideology to define (α,β)-complex fuzzy cosets and analyze some of their algebraic characteristics. Furthermore, we prove that (α,β)-complex fuzzy normal subgroup is constant in the conjugate classes of group. We present an alternative conceptualization of (α,β)-complex fuzzy normal subgroup in the sense of the commutator of groups. We establish the (α,β)-complex fuzzy subgroup of the classical quotient group and show that the set of all (α,β)-complex fuzzy cosets of this specific complex fuzzy normal subgroup form a group. Additionally, we expound the index of α,β-complex fuzzy subgroups and investigate the (α,β)-complex fuzzification of Lagrange’s theorem analog to Lagrange’ theorem of classical group theory.


2021 ◽  
pp. 1-21
Author(s):  
Muhammad Riaz ◽  
Anam Habib ◽  
Muhammad Aslam

 A cubic bipolar fuzzy set (CBFS) is a new approach in computational intelligence and decision-making under uncertainty. This model is the generalization of bipolar fuzzy sets to deal with two-sided contrasting features which can describe the information with a bipolar fuzzy number and an interval-valued bipolar fuzzy number simultaneously. In this paper, the Dombi’s operations are analyzed for information aggregation of cubic bipolar fuzzy numbers (CBFNs). The Dombi’s operations carry the advantage of more pliability and reliability due to the existence of their operational parameters. Owing to the pliable nature of Dombi’s operators, this research work introduces new aggregation operators named as cubic bipolar fuzzy Dombi weighted averaging (CBFDWA) operator and cubic bipolar fuzzy Dombi ordered weighted averaging (CBFDOWA) operator with ℙ -order and ℝ -order, respectively. Additionally, this paper presents some significant characteristics of suggested operators including, idempotency, boundedness and monotonicity. Moreover, a robust multi-criteria decision making (MCDM) technique is developed by using ℙ -CBFDWA and ℝ -CBFDWA operators. Based on the suggested operators a practical application is demonstrated towards MCDM under uncertainty. The comparison analysis of suggested Dombi’s operators with existing operators is also given to discuss the rationality, efficiency and applicability of these operators.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-20
Author(s):  
Isabelle Bloch

Abstract In many domains of information processing, such as knowledge representation, preference modeling, argumentation, multi-criteria decision analysis, spatial reasoning, both vagueness, or imprecision, and bipolarity, encompassing positive and negative parts of information, are core features of the information to be modeled and processed. This led to the development of the concept of bipolar fuzzy sets, and of associated models and tools, such as fusion and aggregation, similarity and distances, mathematical morphology. Here we propose to extend these tools by defining algebraic and topological relations between bipolar fuzzy sets, including intersection, inclusion, adjacency and RCC relations widely used in mereotopology, based on bipolar connectives (in a logical sense) and on mathematical morphology operators. These definitions are shown to have the desired properties and to be consistent with existing definitions on sets and fuzzy sets, while providing an additional bipolar feature. The proposed relations can be used for instance for preference modeling or spatial reasoning. They apply more generally to any type of functions taking values in a poset or a complete lattice, such as L-fuzzy sets.


Sign in / Sign up

Export Citation Format

Share Document