hydrogen synthesis
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 12)

H-INDEX

14
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4297
Author(s):  
Rijuta Ganesh Saratale ◽  
Si-Kyung Cho ◽  
Ganesh Dattatraya Saratale ◽  
Manu Kumar ◽  
Ram Naresh Bharagava ◽  
...  

Global energy consumption has been increasing in tandem with economic growth motivating researchers to focus on renewable energy sources. Dark fermentative hydrogen synthesis utilizing various biomass resources is a promising, less costly, and less energy-intensive bioprocess relative to other biohydrogen production routes. The generated acidogenic dark fermentative effluent [e.g., volatile fatty acids (VFAs)] has potential as a reliable and sustainable carbon substrate for polyhydroxyalkanoate (PHA) synthesis. PHA, an important alternative to petrochemical based polymers has attracted interest recently, owing to its biodegradability and biocompatibility. This review illustrates methods for the conversion of acidogenic effluents (VFAs), such as acetate, butyrate, propionate, lactate, valerate, and mixtures of VFAs, into the value-added compound PHA. In addition, the review provides a comprehensive update on research progress of VFAs to PHA conversion and related enhancement techniques including optimization of operational parameters, fermentation strategies, and genetic engineering approaches. Finally, potential bottlenecks and future directions for the conversion of VFAs to PHA are outlined. This review offers insights to researchers on an integrated biorefinery route for sustainable and cost-effective bioplastics production.


2020 ◽  
Vol 13 (5) ◽  
pp. 73-86
Author(s):  
V. M. Hovorukha ◽  

Increasing pollution of environment by toxic metals is the urgent problem requiring effective solution worldwide. The goal of the work was to study the dynamics of the interaction of Cr(VI), Mo(VI), W(VI) compounds with obligate anaerobic microorganisms Clostridium butyricum GMP1, which ferment organic compounds with the synthesis of hydrogen. The standard methods were used to determine рН and redox potential (Eh), the gas composition, and the concentration of metals. The application Clostridium butyricum GMP1 was showed to be useful to investigate its interaction with toxic metals. The higher redox potential of metal provided the opportunity for its faster and more effective reduction. The patterns of the reduction of toxic metals Cr(VI), Mo(VI) and W(VI) by obligate anaerobic strain Clostridium butyricum GMP1 were obtained. The experimental data confirmed the thermodynamically calculated correlation between the redox potential of the metal reduction to insoluble form and effectiveness of its removal. Obtained results can serve as the basis for further optimization and development of environmental biotechnologies for wastewater treatment with the simultaneous destruction of solid organic waste and hydrogen synthesis.


Energetika ◽  
2019 ◽  
Vol 65 (1) ◽  
Author(s):  
Vira Hovorukha ◽  
Oleksandr Tashyrev ◽  
Hanna Tashyreva ◽  
Olesia Havryliuk ◽  
Olena Bielikova ◽  
...  

The aim of the work was to optimize the ratio of weight of solid (food waste) and liquid (water) phases in order to ensure high efficiency of molecular hydrogen synthesis and degradation of multi-component food waste. Assessment of the efficiency of fermentation process was carried out using colorimetric and potentiometric methods for pH and redox potential measuring, volumetric and chromatographic methods for volume and composition of gas investigation, and mathematical calculations for fermentation parameters determination. The dynamics of hydrogen fermentation of waste in the horizontal reactor using different ratios of solid (food waste) and liquid (water) phases was investigated. The optimization of the ratio of solid and liquid phases was shown to lead to the increase in efficiency of molecular hydrogen synthesis and destruction of waste particles. The ratio of solid and liquid phases 1:3 was determined to be optimal for the effective synthesis of hydrogen as well as for maximum waste decomposition. It provided effective hydrogen fermentation of multi-component food waste and allowed to rationally use material and technical resources. Obtained results are promising for further development of efficient industrial biotechnologies for waste destruction with the simultaneous synthesis of environmentally friendly energy carrier, i.e. molecular hydrogen.


Sign in / Sign up

Export Citation Format

Share Document