scholarly journals Shadow and deflection angle of charged rotating black hole surrounded by perfect fluid dark matter

Author(s):  
Farruh Atamurotov ◽  
Uma Papnoi ◽  
Kimet Jusufi

Abstract We analysed the shadow cast by charged rotating black hole (BH) in presence of perfect fluid dark matter (PFDM). We studied the null geodesic equations and obtained the shadow of the charged rotating BH to see the effects of PFDM parameter $\gamma$, charge $Q$ and rotation parameter $a$, and it is noticed that the size as well as the shape of BH shadow is affected due to PFDM parameter, charge and rotation parameter. Thus, it is seen that the presence of dark matter around a BH affects its spacetime. We also investigated the influence of all the parameters (PFDM parameter $\gamma$, BHs charge $Q$ and rotational parameter $a$) on effective potential, energy emission by graphical representation, and compare all the results with the non rotating case in usual general relativity. To this end, we have also explored the effect of PFDM on the deflection angle and the size of Einstein rings.

2020 ◽  
Vol 35 (26) ◽  
pp. 2050155 ◽  
Author(s):  
Prateek Sharma ◽  
Hemwati Nandan ◽  
Radouane Gannouji ◽  
Rashmi Uniyal ◽  
Amare Abebe

We present a detailed analysis of a rotating black hole surrounded by “quintessence.” This solution represents a fluid with a constant equation of state, [Formula: see text], which can for example describe an effective warm dark matter fluid around a black hole. We clarify the conditions for the existence of such a solution and study its structure by analyzing the existence of horizons as well as the extremal case. We show that the deflection angle produced by the black hole depends on the parameters [Formula: see text] which need to obey the condition [Formula: see text] because of the weak energy condition, where [Formula: see text] is an additional parameter describing the hair of the black hole. In this context, we found that for [Formula: see text] (consistent with warm dark matter) and [Formula: see text], the deviation angle is larger than that in the Kerr space–time for direct and retrograde orbits. We also derive an exact solution in the case of [Formula: see text].


2021 ◽  
pp. 2150112
Author(s):  
Tian-Chi Ma ◽  
He-Xu Zhang ◽  
Peng-Zhang He ◽  
Hao-Ran Zhang ◽  
Yuan Chen ◽  
...  

In this paper, we derived an exact solution of the spherically symmetric Hayward black hole surrounded by perfect fluid dark matter (PFDM). By applying the Newman–Janis algorithm, we generalized it to the corresponding rotating black hole. Then, we studied the shadows of rotating Hayward black hole in PFDM. The apparent shape of the shadow depends upon the black hole spin [Formula: see text], the magnetic charge [Formula: see text] and the PFDM intensity parameter [Formula: see text]. The shadow is a perfect circle in the non-rotating case [Formula: see text] and a deformed one in the rotating case [Formula: see text]. For a fixed value of [Formula: see text], the size of the shadow increases with the increasing [Formula: see text], but decreases with the increasing [Formula: see text]. We further investigated the black hole emission rate. We found that the emission rate decreases with the increasing [Formula: see text] (or [Formula: see text]) and the peak of the emission shifts to lower frequency. Finally, we discussed the observational prospects corresponding to the supermassive black hole Sgr A[Formula: see text] at the center of the Milky Way.


2018 ◽  
Vol 2018 (12) ◽  
pp. 040-040 ◽  
Author(s):  
Xian Hou ◽  
Zhaoyi Xu ◽  
Jiancheng Wang

2015 ◽  
Vol 12 (10) ◽  
pp. 1550108 ◽  
Author(s):  
Jalil Naji

In this paper, we consider rotating black hole in three dimensions with a scalar charge and discuss about the jet-quenching parameter. We find that the effect of scalar charge is decreasing and rotation parameter is increasing the value of the jet-quenching parameter.


2020 ◽  
Vol 102 (10) ◽  
Author(s):  
Bakhtiyor Narzilloev ◽  
Javlon Rayimbaev ◽  
Sanjar Shaymatov ◽  
Ahmadjon Abdujabbarov ◽  
Bobomurat Ahmedov ◽  
...  

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Javlon Rayimbaev ◽  
Sanjar Shaymatov ◽  
Mubasher Jamil

AbstractIn this paper, we investigate circular orbits for test particles around the Schwarzschild–de Sitter (dS) black hole surrounded by perfect fluid dark matter. We determine the region of circular orbits bounded by innermost and outermost stable circular orbits. We show that the impact of the perfect fluid dark matter shrinks the region where circular orbits can exist as the values of both innermost and outermost stable circular orbits decrease. We find that for specific lower and upper values of the dark matter parameter there exist double matching values for inner and outermost stable circular orbits. It turns out that the gravitational attraction due to the dark matter contribution dominates over cosmological repulsion. This gives rise to a remarkable result in the Schwarzschild–de Sitter black hole surrounded by dark matter field in contrast to the Schwarzschild–de Sitter metric. Finally, we study epicyclic motion and its frequencies with their applications to twin peak quasi-periodic oscillations (QPOs) for various models. We find the corresponding values of the black hole parameters which could best fit and explain the observed twin peak QPO object GRS 1915+109 from microquasars.


Author(s):  
Ali Övgün ◽  
İzzet Sakallı

In this paper, we use a new asymptotically flat and spherically symmetric solution in the generalized Einstein-Cartan-Kibble-Sciama (ECKS) theory of gravity to study the weak gravitational lensing and its shadow cast. To this end, we first compute the weak deflection angle of generalized ECKS black hole using the Gauss–Bonnet theorem in plasma medium and in vacuum. Next by using the Newman-Janis algorithm without complexification, we derive the rotating generalized ECKS black hole and in the sequel study its shadow. Then, we discuss the effect of the ECKS parameter on the shadow of the black hole and weak deflection angle. In short, the goal of this paper is to give contribution to the ECKS theory and look for evidences to understand how the ECKS parameter effects the gravitational lensing.


Author(s):  
Wajiha Javed ◽  
Rimsha Babar ◽  
Ali Övgün

In this paper, we argue that one can calculate the weak deflection angle in the background of Einstein-Maxwell-Dilaton-Axion black hole using the Gauss-Bonnet theorem. To support this, the optical geometry of the black hole with the Gibbons-Werner method are used to obtain the deflection angle of light in the weak field limits. Moreover, we investigate the effect of a plasma medium on deflection of light for a given black hole. Because of dilaton and axion are one of the candidate of the dark matter, it can give us a hint on observation of dark matter which is supported the black hole. Hence we demonstrate the observational viability via showing the effect of the dark matter on the weak deflection angle.


Sign in / Sign up

Export Citation Format

Share Document