sunspot minimum
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 1)

H-INDEX

17
(FIVE YEARS 0)

2020 ◽  
Vol 116 (7/8) ◽  
Author(s):  
Pieter B. Kotze

Spectral analysis using wavelet, Lomb–Scargle and maximum entropy techniques of the proxy rainfall record of northeastern South Africa based on annual carbon isotope (δ13C) data obtained from baobab trees for the period 1600 AD – 2000 AD show clear evidence of the presence of characteristic solar periodicities. Solar periodicities that were identified above the 95% confidence level include the ~11-year Schwabe cycle, the ~22-year Hale cycle as well as the 80–110-year Gleissberg cycle. A Morlet wavelet analysis of the δ13C data between 1600 AD and 1700 AD shows the effect of the Maunder sunspot minimum on both the Schwabe and Hale cycles during this time.


2018 ◽  
Vol 13 (S340) ◽  
pp. 319-320
Author(s):  
Nipa J. Bhatt ◽  
Rajmal Jain

AbstractPredictions of sunspot cycle are important due to their space weather effects. Bhattet al.(2009) predicted sunspot cycle 24 (Maximum amplitude: 92.8±19.6; Timing:October 2012±4 months) using relative sunspot number (International Sunspot Number), and average geomagnetic activity indexaaconsidering 2008 as the year of sunspot minimum. Owing to the extended solar minimum till 2009, we re-examine our prediction model. Also, the newly calibrated international sunspot number reduces many discrepancies in the old dataset and is available from Solar Influences Data Center (SIDC) website. Considering 2009 as sunspot minimum year and newly calibrated international sunspot number, (i) The annual maximum amplitude of cycle 24 = 118.5±24.4 (observed = 113.3±0.1), (ii) A smoothed monthly mean sunspot number maximum in January 2014±4 months (observed in February 2014). Our prediction method appears to be a reliable indicator for the predictability of cycle 25.


2015 ◽  
Vol 55 (8) ◽  
pp. 1033-1038 ◽  
Author(s):  
B. Kirov ◽  
S. Asenovski ◽  
K. Georgieva ◽  
V. N. Obridko

2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Virginia Mabel Silbergleit

Gumbel’s first distribution is applied to smoothed monthly mean sunspot numbers for solar cycles 10 to 24. According to that, the next minimum for solar cycle 24-25 transition would be the deepest solar minimum of the last 150 years. This study provides an additional insight about changes in the Sun which are currently happening.


2013 ◽  
Vol 77 (5) ◽  
pp. 513-516 ◽  
Author(s):  
R. T. Gushchina ◽  
A. V. Belov ◽  
V. G. Yanke
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document