scholarly journals Probable Value for the Next Sunspot Minimum

2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Virginia Mabel Silbergleit

Gumbel’s first distribution is applied to smoothed monthly mean sunspot numbers for solar cycles 10 to 24. According to that, the next minimum for solar cycle 24-25 transition would be the deepest solar minimum of the last 150 years. This study provides an additional insight about changes in the Sun which are currently happening.

2014 ◽  
Vol 4 (2) ◽  
pp. 477-483
Author(s):  
Debojyoti Halder

Sunspots are temporary phenomena on the photosphere of the Sun which appear visibly as dark spots compared to surrounding regions. Sunspot populations usually rise fast but fall more slowly when observed for any particular solar cycle. The sunspot numbers for the current cycle 24 and the previous three cycles have been plotted for duration of first four years for each of them. It appears that the value of peak sunspot number for solar cycle 24 is smaller than the three preceding cycles. When regression analysis is made it exhibits a trend of slow rising phase of the cycle 24 compared to previous three cycles. Our analysis further shows that cycle 24 is approaching to a longer-period but with smaller occurrences of sunspot number.


2010 ◽  
Vol 28 (2) ◽  
pp. 417-425 ◽  
Author(s):  
A. Yoshida ◽  
H. Yamagishi

Abstract. It is shown that the monthly smoothed sunspot number (SSN) or its rate of decrease during the final years of a solar cycle is correlated with the amplitude of the succeeding cycle. Based on this relationship, the amplitude of solar cycle 24 is predicted to be 84.5±23.9, assuming that the monthly smoothed SSN reached its minimum in December 2008. It is further shown that the monthly SSN in the three-year period from 2006 through 2008 is well correlated with the monthly average of the intensity of the interplanetary magnetic field (IMF). This correlation indicates that the SSN in the final years of a solar cycle is a good proxy for the IMF, which is understood to reflect the magnetic field in the corona of the sun, and the IMF is expected to be smallest at the solar minimum. We believe that this finding illuminates a physical meaning underlying the well-known precursor method for forecasting the amplitude of the next solar cycle using the aa index at the solar minimum or its average value in the decaying phase of the solar cycle (e.g. Ohl, 1966), since it is known that the geomagnetic disturbance depends strongly on the intensity of the IMF. That is, the old empirical method is considered to be based on the fact that the intensity of the coronal magnetic field decreases in the late phase of a solar cycle in parallel with the SSN. It seems that the precursor method proposed by Schatten et al. (1978) and Svalgaard et al. (2005), which uses the intensity of the polar magnetic field of the sun several years before a solar minimum, is also based on the same physical phenomenon, but seen from a different angle.


2020 ◽  
Vol 64 (1) ◽  
pp. 58-65 ◽  
Author(s):  
E. S. Isaeva ◽  
V. M. Tomozov ◽  
S. A. Yazev
Keyword(s):  
The Sun ◽  
X Ray ◽  

2018 ◽  
Vol 14 (A30) ◽  
pp. 339-341
Author(s):  
Andrea Diercke ◽  
Carsten Denker

Abstracthe Chromospheric Telescope (ChroTel) observes the entire solar disk since 2011 in three different chromospheric wavelengths: Hα, Ca ii K, and He i. The instrument records full-disk images of the Sun every three minutes in these different spectral ranges. The ChroTel observations cover the rising and decaying phase of solar cycle 24. We started analyzing the ChroTel time-series and created synoptic maps of the entire observational period in all three wavelength bands. The maps will be used to analyze the poleward migration of quiet-Sun filaments in solar cycle 24.


2015 ◽  
Vol 11 (S320) ◽  
pp. 309-314 ◽  
Author(s):  
Anqin Chen ◽  
Jingxiu Wang

AbstractComparing with solar cycles 21-23, the level of solar activity in the current cycle is very low. So far, there have been only five SARs and 45 X class flares. The monthly smoothed total solar irradiance decreased sharply by 0.09% from the maximum of cycle 23 to the minima between cycles 23 and 24. In this contribution, we present new studies on SARs in Cycle 24. The SARs in the current cycle have relatively smaller flare index (Iflare) and composite vector field index (Icom) comparing with the SARs in cycles 22 and 23. There is a clearly linear relationship between Iflare and Icom. The emphasis of this contribution is put on the similarity and different behaviors of vector magnetic fields of the SARs in the current solar cycle and the previous ones. We try to get a satisfactory account for the general characteristics and relatively lower level of solar flare activity in Cycle 24.


2015 ◽  
Vol 11 (S320) ◽  
pp. 330-332
Author(s):  
Ahmed A. Hady ◽  
Marwa H. Mostafa ◽  
Susan W. Samwel

AbstractDuring the declining phase of the Solar cycle 24, a new peak appeared on January 7, 2014. The release of x-class flares, with the high energetic particles, were found to be more intense than that occurred during the main peak of the same cycle. Few X-class flares were released, lately, during the year 2014. We note that during the last 5 solar cycles, a new peak has appeared, releasing high energetic particles and X-class solar flares, which are called the secondary peak or the double peak of solar cycle. The aim of this descriptive study is to follow the morphological and magnetic changes of the active region before, during, and after the production of X-class flares according to data analysis. Furthermore, the causes of the release of such eruptive storms have been discussed for the period, year 2014, during the double peak of the solar cycle 24.


2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Hemlata Dharmashaktu ◽  
N.K. Lohani

The characteristics of CMEs we studied are angular width, linear speed, and acceleration for all categories of CMEs such as narrow (W ≤20°), intermediate (20°< W<200°), wide (W ≥ 200°) and linear speed <500 km/s during the descending phase of solar cycle 23 and 24 and compared them. We have found that there are 1951 narrow CMEs during solar cycle 23 that is 1.9 times greater than in solar cycle 24 (1047). On the other side, the number of intermediate CMEs during solar cycle 24 (1571) is 1.14 times more than solar cycle 23 (1162). We observed no noticeable difference between the number of wide CMEs of solar cycle 23 (29) and 24 (36). The angular width of CMEs during the descending phase of solar cycle 23 and solar cycle 24, predominately distributed around 100-600. The fascinating result is that the angular width distributions for the descending phase of solar cycles are approximately identical. On comparing the results of linear speed of both solar cycle, we can say that, (i) 93.7% (1729) and 87.7% (908) of narrow CMEs, (ii) 97% (1328) and 94% (1479) of intermediate CMEs and (iii) 44% (13) and 42% (15) of wide CMEs have speed of <500 km s-1, respectively. Mostly the fractions of narrow and intermediate CMEs decline sharply at the speeds greater than 500 km s-1. The maximum speed observed during the 23rd cycle is 1994 km/s (wide CME) and the 24th cycle is 3163 km/s (wide CME) respectively. It was noticed that the speed of the 24th solar cycle CME is higher than the 23rd solar cycle CME. The major fraction of CMEs has acceleration in the range of -20 to 20 km s-2, all types of CMEs. The narrow and intermediate CMEs mostly show acceleration while wide CMEs show deceleration.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jie Zhang ◽  
Manuela Temmer ◽  
Nat Gopalswamy ◽  
Olga Malandraki ◽  
Nariaki V. Nitta ◽  
...  

AbstractThis review article summarizes the advancement in the studies of Earth-affecting solar transients in the last decade that encompasses most of solar cycle 24. It is a part of the effort of the International Study of Earth-affecting Solar Transients (ISEST) project, sponsored by the SCOSTEP/VarSITI program (2014–2018). The Sun-Earth is an integrated physical system in which the space environment of the Earth sustains continuous influence from mass, magnetic field, and radiation energy output of the Sun in varying timescales from minutes to millennium. This article addresses short timescale events, from minutes to days that directly cause transient disturbances in the Earth’s space environment and generate intense adverse effects on advanced technological systems of human society. Such transient events largely fall into the following four types: (1) solar flares, (2) coronal mass ejections (CMEs) including their interplanetary counterparts ICMEs, (3) solar energetic particle (SEP) events, and (4) stream interaction regions (SIRs) including corotating interaction regions (CIRs). In the last decade, the unprecedented multi-viewpoint observations of the Sun from space, enabled by STEREO Ahead/Behind spacecraft in combination with a suite of observatories along the Sun-Earth lines, have provided much more accurate and global measurements of the size, speed, propagation direction, and morphology of CMEs in both 3D and over a large volume in the heliosphere. Many CMEs, fast ones, in particular, can be clearly characterized as a two-front (shock front plus ejecta front) and three-part (bright ejecta front, dark cavity, and bright core) structure. Drag-based kinematic models of CMEs are developed to interpret CME propagation in the heliosphere and are applied to predict their arrival times at 1 AU in an efficient manner. Several advanced MHD models have been developed to simulate realistic CME events from the initiation on the Sun until their arrival at 1 AU. Much progress has been made on detailed kinematic and dynamic behaviors of CMEs, including non-radial motion, rotation and deformation of CMEs, CME-CME interaction, and stealth CMEs and problematic ICMEs. The knowledge about SEPs has also been significantly improved. An outlook of how to address critical issues related to Earth-affecting solar transients concludes this article.


2015 ◽  
Vol 808 (1) ◽  
pp. 4 ◽  
Author(s):  
M. Meftah ◽  
A. Hauchecorne ◽  
A. Irbah ◽  
T. Corbard ◽  
R. Ikhlef ◽  
...  
Keyword(s):  
The Sun ◽  

2020 ◽  
Vol 6 (1) ◽  
pp. 51-62
Author(s):  
Nadezhda Kurazhkovskaya

This paper deals with extreme conditions of the global magnetosphere disturbance: very quiet and greatly disturbed, and their relationship with interplanetary medium parameters. The degree of global magnetosphere disturbance was estimated from the monthly and annual number of magnetically quiet and magnetically disturbed days. The cyclic and seasonal distributions of magnetically quiet and disturbed days were compared, and their relationship with interplanetary medium parameters in solar cycles 20–24 was analyzed. Magnetically quiet days are shown to be mainly observed at the ascending phase of solar activity and during the winter solstice season. Magnetically disturbed days dominate at the descending phase of the solar cycle and during the equinox season. An anomalously large increase in the number of quiet days was found in solar cycle 24 as compared to previous cycles. It has been established that the cyclic variation in the annual number of quiet and disturbed days is determined by the behavior and magnitude of the speed, temperature, dynamic pressure of solar wind plasma and the interplanetary magnetic field modulus. The detected burst in the number of quiet days during the ascending phase of solar cycle 24 is assumed to reflect internal processes on the Sun and related changes in interplanetary medium parameters. The patterns of cyclical and seasonal variation in the number of magnetically quiet and disturbed days and their relationship with the solar wind parameters can be used to predict space weather.


Sign in / Sign up

Export Citation Format

Share Document