sodic plagioclase
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2009 ◽  
Vol 164 (11) ◽  
pp. 726-736 ◽  
Author(s):  
S. Vijay Anand ◽  
M. S. Pandian ◽  
S. Mithira ◽  
R. V.S.S.N. Ravikumar ◽  
P. Sambasiva Rao


1991 ◽  
Vol 55 (379) ◽  
pp. 173-181 ◽  
Author(s):  
J. Victor Owen

AbstractOrbicules in diorite from the Grenville Front zone of eastern Labrador are defined by shell structures alternately enriched and depleted in biotite, epidote and magnetite. Hornblende occurs locally in orbicule cores and the matrix, but not in the shells. The shells enclose plagioclase-rich (An40–45), leucodioritic cores containing biotite, epidote, magnetite and/or hornblende-bearing mafic clots. The matrix of the orbicules is mineralogically-similar to the orbicule cores, but is mesocratic, and contains relatively sodic plagioclase and accessory quartz and K-feldspar. In places, hornblende contains quartz oikocrysts, implying the resorption of early-formed clinopyroxene, and is rimmed by biotite and epidote. The latter phases also occur as inclusions in quartz-free hornblende interpreted to have crystallized directly from the magma. Epidote has a pistacite content of 21 to 26 and occurs as (1) tiny, idiomorphic crystals (‘epidote I’) enclosed by plagioclase or hornblende, and (2) relatively large (to 1 mm) grains with vermicular textures (‘epidote II’), particularly where in mutual contact with biotite (or hornblende) and plagioclase. These microstructures suggest that epidote is a magmatic phase which formed by direct crystallization from the magma, and by reaction of previously-formed minerals with the magma.The following approximate paragenetic sequence has been inferred for orbicule cores and the matrix: clinopyroxene (clinopyroxene resorbed [→ poikilitic hornblende]), epidote I, Ca-Na plagioclase, biotite, hornblende (biotite and/or hornblende ± plagioclase resorbed [→ epidote II]), quartz + K-feldspar. Biotite compositions became progressively more Fe-rich during crystallization (XMg ⋍ 0.6 → 0.4), and the first-formed plagioclase (inclusions in quartz-free hornblende in orbicule cores) is more calcic (An51) than the last (matrix grains: An35).The appearance of epidote early in the crystallization history of the diorite testifies to elevated PH2O and PTotal (PT). The most aluminous hornblende indicates maximum PT of 5 to 6 kbar. Orbicule shell structures are interpreted to have crystallized from supercooled boundary layers enclosing water-saturated globules within the dioritic magma. Although sufficient to suppress the formation of hornblende in the shell structures, the extent of magma supercooling did not permit the development of comb layering in the orbicules. Supercooling is attributed to an influx into the magma of water from an unidentified source.





Clay Minerals ◽  
1976 ◽  
Vol 11 (1) ◽  
pp. 51-63 ◽  
Author(s):  
C. S. Exley

AbstractPartial chemical and X-ray analyses of specimens taken serially from three different rock types from the St. Austell granite show that potash feldspar is hydrothermally altered to a micaceous mineral. Sodic plagioclase alters to mica, montmorillonite and kaolinite. Furthermore, in the latter case the micaceous mineral and montmorillonite are intermediate products between feldspar and kaolinite. It is believed that the level of H+ ion activity in the altering solutions controlled the removal of alkalis, Al2O3 and SiO2 so as to leave appropriate concentrations of these constituents to re-form as mica or montmorillonite. Further alteration of a similar kind produced kaolinite.



1973 ◽  
Vol 39 (4) ◽  
pp. 327-339 ◽  
Author(s):  
Michael W. Phillips ◽  
Paul H. Ribbe


Sign in / Sign up

Export Citation Format

Share Document