vector competency
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Luis M. Hernández-Triana ◽  
Arran J. Folly ◽  
Elsa Barrero ◽  
Sarah Lumley ◽  
Maria del Mar Fernández de Marco ◽  
...  

Abstract Background A number of zoonotic mosquito-borne viruses have emerged in Europe in recent decades. Batai virus (BATV), a member of the genus Orthobunyavirus, is one example of a relatively newly emerged mosquito-borne virus, having been detected in mosquitoes and livestock. We conducted vector competency studies on three mosquito species at a low temperature to assess whether Aedes and Culex mosquito species are susceptible to infection with BATV. Methods Colonised lines of Aedes aegypti and Culex pipiens and a wild-caught species, Aedes detritus, were orally inoculated with BATV strain 53.2, originally isolated from mosquitoes trapped in Germany in 2009. Groups of blood-fed female mosquitoes were maintained at 20 °C for 7 or 14 days. Individual mosquitoes were screened for the presence of BATV in body, leg and saliva samples for evidence of infection, dissemination and transmission, respectively. BATV RNA was detected by reverse transcription-PCR, and positive results confirmed by virus isolation in Vero cells. Results Aedes detritus was highly susceptible to BATV, with an infection prevalence of ≥ 80% at both measurement time points. Disseminated infections were recorded in 30.7–41.6% of Ae. detritus, and evidence of virus transmission with BATV in saliva samples (n = 1, days post-infection: 14) was observed. Relatively lower rates of infection for Ae. aegypti and Cx. pipiens were observed, with no evidence of virus dissemination or transmission at either time point. Conclusions This study shows that Ae. detritus may be a competent vector for BATV at 20 °C, whereas Ae. aegypti and Cx. pipiens were not competent. Critically, the extrinsic incubation period appears to be ≤  7 days for Ae. detritus, which may increase the onward transmissibility potential of BATV in these populations. Graphical Abstract


2021 ◽  
Author(s):  
Luis Miguel Hernandez-Triana ◽  
Arran Folly ◽  
Elsa Barrero ◽  
Sarah Lumley ◽  
Maria del Mar Fernández de Marco ◽  
...  

Abstract Background A number of zoonotic mosquito-borne viruses have emerged in Europe in recent decades. Batai virus (BATV), orthobunyavirus, is one example having been detected in mosquitoes and livestock. We conducted vector competency studies on three mosquito species at a low temperature to assess whether Aedes and Culex mosquito species are susceptible to infection with BATV. Methods Colonised lines of Aedes aegypti and Culex pipiens, and a wild-caught species, Aedes detritus, were orally inoculated with BATV strain 53.2, originally isolated from mosquitoes trapped in Germany in 2009. Groups of blood-fed female mosquitoes were maintained at 20oC for seven or fourteen days. Individual mosquitoes were screened for the presence of BATV in body, leg and saliva samples for evidence of infection, dissemination and transmission, respectively. Batai virus RNA was detected by RT-PCR and positive results confirmed by virus isolation in Vero cells. Results Aedes detritus was highly susceptible to BATV with infection prevalence at or above 80% at both time points. Disseminated infections were recorded in 30.7–41.6% of Ae. detritus and evidence for virus transmission with BATV detected in saliva samples (n = 1, dpi = 14) was observed. Lower rates of infection for Ae. aegypti and Cx. pipiens with no evidence for virus dissemination or transmission at either time point. Conclusions This study shows Ae. detritus may be a competent vector for BATV at 20oC, whereas Ae. aegypti and Cx. pipiens were not competent. Critically, the extrinsic incubation period appears to be ≤ 7 days for Ae. detritus, which may increase the onward transmissibility potential of BATV in these populations.


Author(s):  
Kacie Ring ◽  
Lisa Couper ◽  
Anne Sapiro ◽  
Fauna Yarza ◽  
Frank Yang ◽  
...  

A vector’s susceptibility and ability to transmit a pathogen— termed vector competency—determines disease outcomes, yet the ecological factors influencing tick vector competency remain largely unknown. Ixodes pacificus, the tick vector of Borrelia burgdorferi (Bb) in the western U.S., feeds on rodents, birds, and lizards. Unlike rodents and birds which are reservoirs for Bb and infect juvenile ticks, lizards are refractory to Bb and cannot infect feeding ticks. Additionally, the lizard bloodmeal contains borreliacidal properties, clearing previously infected feeding ticks of their Bb infection. Despite I. pacificus feeding on a range of hosts, it is undetermined how the host identity of the larval bloodmeal affects future nymphal vector competency. We experimentally evaluate the influence of larval host bloodmeal on Bb acquisition by nymphal I. pacificus. Larval I. pacificus were fed on either lizards or mice and after molting, nymphs were fed on Bb-infected mice. We found that lizard-fed larvae were significantly more likely to become infected with Bb during their next bloodmeal than mouse-fed larvae. We also conducted the first RNA-seq analysis on whole-bodied I. pacificus and found significant upregulation of tick antioxidants and antimicrobial peptides in the lizard-fed group. Our results indicate that the lizard bloodmeal significantly alters vector competency and gene regulation in ticks, highlighting the importance of host bloodmeal identity in vector-borne disease transmission and upends prior notions about the role of lizards in Lyme disease community ecology.


2021 ◽  
Author(s):  
Kacie Ring ◽  
Lisa Couper ◽  
Anne L. Sapiro ◽  
Fauna Yarza ◽  
X. Frank Yang ◽  
...  

AbstractA vector’s susceptibility and ability to transmit a pathogen— termed vector competency—determines disease outcomes, yet the ecological factors influencing tick vector competency remain largely unknown. Ixodes pacificus, the vector of Borrelia burgdorferi (Bb) in the western U.S., feeds on rodents, birds, and lizards. While rodents and birds are reservoirs for Bb and infect juvenile ticks, lizards are Bb-refractory. Despite I. pacificus feeding on a range of hosts, it is undetermined how larval host bloodmeal identity affects future nymphal vector competency. We experimentally evaluate the influence of larval host bloodmeal on Bb acquisition by nymphal I. pacificus. Larval I. pacificus were fed on either lizards or mice and after molting, nymphs were fed on Bb-infected mice. We found that lizard-fed larvae were significantly more likely to become infected with Bb during their next bloodmeal than mouse-fed larvae. We also conducted the first RNA-seq analysis on whole-bodied I. pacificus and found significant upregulation of antioxidants and antimicrobial peptides in the lizard-fed group. Our results indicate that the lizard bloodmeal significantly alters vector competency and gene regulation in ticks, highlighting the importance of host bloodmeal identity in disease transmission and upends prior notions about the role of lizards in Lyme disease transmission.


Author(s):  
Tom G Schwan

Abstract The relapsing fever spirochetes Borrelia hermsii and Borrelia turicatae are each maintained and transmitted in nature by their specific tick vectors, Ornithodoros hermsi Wheeler (Acari: Argasidae) and Ornithodoros turicata (Duges), respectively. The basis for this spirochete and vector specificity is not known, but persistent colonization of spirochetes in the tick’s salivary glands is presumed to be essential for transmission by these long-lived ticks that feed in only minutes on their warm-blooded hosts. To examine this hypothesis further, cohorts of O. hermsi and O. turicata were infected with B. hermsii and examined 7–260 d later for infection in their midgut, salivary glands, and synganglion. While the midgut from all ticks of both species at all time points examined were infected with spirochetes, the salivary glands of only O. hermsi remained persistently infected. The salivary glands of O. turicata were susceptible to an early transient infection. However, no spirochetes were observed in these tissues beyond the first 32 d after acquisition. Ticks of both species were fed on mice 112 d after they acquired spirochetes and only those mice fed upon by O. hermsi became infected. Thus, the vector competency for B. hermsii displayed by O. hermsi but not O. turicata lies, in part, in the persistent infection of the salivary glands of the former but not the latter species of tick. The genetic and biochemical mechanisms supporting this spirochete and vector specificity remain to be identified.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Rita V. M. Rio ◽  
Anna K. S. Jozwick ◽  
Amy F. Savage ◽  
Afsoon Sabet ◽  
Aurelien Vigneron ◽  
...  

ABSTRACT Many symbionts supplement their host’s diet with essential nutrients. However, whether these nutrients also enhance parasitism is unknown. In this study, we investigated whether folate (vitamin B9) production by the tsetse fly (Glossina spp.) essential mutualist, Wigglesworthia, aids auxotrophic African trypanosomes in completing their life cycle within this obligate vector. We show that the expression of Wigglesworthia folate biosynthesis genes changes with the progression of trypanosome infection within tsetse. The disruption of Wigglesworthia folate production caused a reduction in the percentage of flies that housed midgut (MG) trypanosome infections. However, decreased folate did not prevent MG trypanosomes from migrating to and establishing an infection in the fly’s salivary glands, thus suggesting that nutrient requirements vary throughout the trypanosome life cycle. We further substantiated that trypanosomes rely on symbiont-generated folate by feeding this vitamin to Glossina brevipalpis, which exhibits low trypanosome vector competency and houses Wigglesworthia incapable of producing folate. Folate-supplemented G. brevipalpis flies were significantly more susceptible to trypanosome infection, further demonstrating that this vitamin facilitates parasite infection establishment. Our cumulative results provide evidence that Wigglesworthia provides a key metabolite (folate) that is “hijacked” by trypanosomes to enhance their infectivity, thus indirectly impacting tsetse species vector competency. Parasite dependence on symbiont-derived micronutrients, which likely also occurs in other arthropod vectors, represents a relationship that may be exploited to reduce disease transmission. IMPORTANCE Parasites elicit several physiological changes in their host to enhance transmission. Little is known about the functional association between parasitism and microbiota-provisioned resources typically dedicated to animal hosts and how these goods may be rerouted to optimize parasite development. This study is the first to identify a specific symbiont-generated metabolite that impacts insect vector competence by facilitating parasite establishment and, thus, eventual transmission. Specifically, we demonstrate that the tsetse fly obligate mutualist Wigglesworthia provisions folate (vitamin B9) that pathogenic African trypanosomes exploit in an effort to successfully establish an infection in the vector’s MG. This process is essential for the parasite to complete its life cycle and be transmitted to a new vertebrate host. Disrupting metabolic contributions provided by the microbiota of arthropod disease vectors may fuel future innovative control strategies while also offering minimal nontarget effects.


2018 ◽  
Vol 12 (6) ◽  
pp. e0006521 ◽  
Author(s):  
Nildimar Alves Honório ◽  
Keenan Wiggins ◽  
Daniel Cardoso Portela Câmara ◽  
Bradley Eastmond ◽  
Barry W. Alto

2018 ◽  
Vol 14 (2) ◽  
pp. e1006899 ◽  
Author(s):  
Xiumei Song ◽  
Mengfei Wang ◽  
Li Dong ◽  
Huaimin Zhu ◽  
Jingwen Wang

2017 ◽  
Vol 97 (2) ◽  
pp. 330-339 ◽  
Author(s):  
Sasha R. Azar ◽  
Pamela M. Stark ◽  
Mustapha Debboun ◽  
Jeremy Vela ◽  
Christopher M. Roundy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document