scholarly journals Mutualist-Provisioned Resources Impact Vector Competency

mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Rita V. M. Rio ◽  
Anna K. S. Jozwick ◽  
Amy F. Savage ◽  
Afsoon Sabet ◽  
Aurelien Vigneron ◽  
...  

ABSTRACT Many symbionts supplement their host’s diet with essential nutrients. However, whether these nutrients also enhance parasitism is unknown. In this study, we investigated whether folate (vitamin B9) production by the tsetse fly (Glossina spp.) essential mutualist, Wigglesworthia, aids auxotrophic African trypanosomes in completing their life cycle within this obligate vector. We show that the expression of Wigglesworthia folate biosynthesis genes changes with the progression of trypanosome infection within tsetse. The disruption of Wigglesworthia folate production caused a reduction in the percentage of flies that housed midgut (MG) trypanosome infections. However, decreased folate did not prevent MG trypanosomes from migrating to and establishing an infection in the fly’s salivary glands, thus suggesting that nutrient requirements vary throughout the trypanosome life cycle. We further substantiated that trypanosomes rely on symbiont-generated folate by feeding this vitamin to Glossina brevipalpis, which exhibits low trypanosome vector competency and houses Wigglesworthia incapable of producing folate. Folate-supplemented G. brevipalpis flies were significantly more susceptible to trypanosome infection, further demonstrating that this vitamin facilitates parasite infection establishment. Our cumulative results provide evidence that Wigglesworthia provides a key metabolite (folate) that is “hijacked” by trypanosomes to enhance their infectivity, thus indirectly impacting tsetse species vector competency. Parasite dependence on symbiont-derived micronutrients, which likely also occurs in other arthropod vectors, represents a relationship that may be exploited to reduce disease transmission. IMPORTANCE Parasites elicit several physiological changes in their host to enhance transmission. Little is known about the functional association between parasitism and microbiota-provisioned resources typically dedicated to animal hosts and how these goods may be rerouted to optimize parasite development. This study is the first to identify a specific symbiont-generated metabolite that impacts insect vector competence by facilitating parasite establishment and, thus, eventual transmission. Specifically, we demonstrate that the tsetse fly obligate mutualist Wigglesworthia provisions folate (vitamin B9) that pathogenic African trypanosomes exploit in an effort to successfully establish an infection in the vector’s MG. This process is essential for the parasite to complete its life cycle and be transmitted to a new vertebrate host. Disrupting metabolic contributions provided by the microbiota of arthropod disease vectors may fuel future innovative control strategies while also offering minimal nontarget effects.

2014 ◽  
Vol 80 (18) ◽  
pp. 5844-5853 ◽  
Author(s):  
Veronika Michalkova ◽  
Joshua B. Benoit ◽  
Brian L. Weiss ◽  
Geoffrey M. Attardo ◽  
Serap Aksoy

ABSTRACTThe viviparous tsetse fly utilizes proline as a hemolymph-borne energy source. In tsetse, biosynthesis of proline from alanine involves the enzyme alanine-glyoxylate aminotransferase (AGAT), which requires pyridoxal phosphate (vitamin B6) as a cofactor. This vitamin can be synthesized by tsetse's obligate symbiont,Wigglesworthia glossinidia. In this study, we examined the role ofWigglesworthia-produced vitamin B6for maintenance of proline homeostasis, specifically during the energetically expensive lactation period of the tsetse's reproductive cycle. We found that expression ofagat, as well as genes involved in vitamin B6metabolism in both host and symbiont, increases in lactating flies. Removal of symbionts via antibiotic treatment of flies (aposymbiotic) led to hypoprolinemia, reduced levels of vitamin B6in lactating females, and decreased fecundity. Proline homeostasis and fecundity recovered partially when aposymbiotic tsetse were fed a diet supplemented with either yeast orWigglesworthiaextracts. RNA interference-mediated knockdown ofagatin wild-type flies reduced hemolymph proline levels to that of aposymbiotic females. Aposymbiotic flies treated withagatshort interfering RNA (siRNA) remained hypoprolinemic even upon dietary supplementation with microbial extracts or B vitamins. Flies infected with parasitic African trypanosomes display lower hemolymph proline levels, suggesting that the reduced fecundity observed in parasitized flies could result from parasite interference with proline homeostasis. This interference could be manifested by competition between tsetse and trypanosomes for vitamins, proline, or other factors involved in their synthesis. Collectively, these results indicate that the presence ofWigglesworthiain tsetse is critical for the maintenance of proline homeostasis through vitamin B6production.


2015 ◽  
Vol 81 (16) ◽  
pp. 5375-5386 ◽  
Author(s):  
Anna K. Snyder ◽  
Rita V. M. Rio

ABSTRACTClosely related ancient endosymbionts may retain minor genomic distinctions through evolutionary time, yet the biological relevance of these small pockets of unique loci remains unknown. The tsetse fly (Diptera: Glossinidae), the sole vector of lethal African trypanosomes (Trypanosomaspp.), maintains an ancient and obligate mutualism with species belonging to the gammaproteobacteriumWigglesworthia. Extensive concordant evolution with associatedWigglesworthiaspecies has occurred through tsetse species radiation. Accordingly, the retention of unique symbiont loci betweenWigglesworthiagenomes may prove instrumental toward host species-specific biological traits. Genome distinctions between “Wigglesworthiamorsitans” (harbored withinGlossina morsitansbacteriomes) and the basal speciesWigglesworthia glossinidia(harbored withinGlossina brevipalpisbacteriomes) include the retention of chorismate and downstream folate (vitamin B9) biosynthesis capabilities, contributing to distinct symbiont metabolomes. Here, we demonstrate that theseW. morsitanspathways remain functionally intact, with folate likely being systemically disseminated through a synchronously expressed tsetse folate transporter within bacteriomes. The folate produced byW. morsitansis demonstrated to be pivotal forG. morsitanssexual maturation and reproduction. Modest differences between ancient symbiont genomes may still play key roles in the evolution of their host species, particularly if loci are involved in shaping host physiology and ecology. Enhanced knowledge of theWigglesworthia-tsetse mutualism may also provide novel and specific avenues for vector control.


2016 ◽  
Vol 113 (25) ◽  
pp. 6961-6966 ◽  
Author(s):  
Emre Aksoy ◽  
Aurélien Vigneron ◽  
XiaoLi Bing ◽  
Xin Zhao ◽  
Michelle O’Neill ◽  
...  

Tsetse flies are biological vectors of African trypanosomes, the protozoan parasites responsible for causing human and animal trypanosomiases across sub-Saharan Africa. Currently, no vaccines are available for disease prevention due to antigenic variation of the Variant Surface Glycoproteins (VSG) that coat parasites while they reside within mammalian hosts. As a result, interference with parasite development in the tsetse vector is being explored to reduce disease transmission. A major bottleneck to infection occurs as parasites attempt to colonize tsetse’s midgut. One critical factor influencing this bottleneck is the fly’s peritrophic matrix (PM), a semipermeable, chitinous barrier that lines the midgut. The mechanisms that enable trypanosomes to cross this barrier are currently unknown. Here, we determined that as parasites enter the tsetse’s gut, VSG molecules released from trypanosomes are internalized by cells of the cardia—the tissue responsible for producing the PM. VSG internalization results in decreased expression of a tsetse microRNA (mir-275) and interferes with the Wnt-signaling pathway and the Iroquois/IRX transcription factor family. This interference reduces the function of the PM barrier and promotes parasite colonization of the gut early in the infection process. Manipulation of the insect midgut homeostasis by the mammalian parasite coat proteins is a novel function and indicates that VSG serves a dual role in trypanosome biology—that of facilitating transmission through its mammalian host and insect vector. We detail critical steps in the course of trypanosome infection establishment that can serve as novel targets to reduce the tsetse’s vector competence and disease transmission.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Balázs Szöőr ◽  
Dorina V. Simon ◽  
Federico Rojas ◽  
Julie Young ◽  
Derrick R. Robinson ◽  
...  

ABSTRACT Glycosomes are peroxisome-related organelles that compartmentalize the glycolytic enzymes in kinetoplastid parasites. These organelles are developmentally regulated in their number and composition, allowing metabolic adaptation to the parasite’s needs in the blood of mammalian hosts or within their arthropod vector. A protein phosphatase cascade regulates differentiation between parasite developmental forms, comprising a tyrosine phosphatase, Trypanosoma brucei PTP1 (TbPTP1), which dephosphorylates and inhibits a serine threonine phosphatase, TbPIP39, which promotes differentiation. When TbPTP1 is inactivated, TbPIP39 is activated and during differentiation becomes located in glycosomes. Here we have tracked TbPIP39 recruitment to glycosomes during differentiation from bloodstream “stumpy” forms to procyclic forms. Detailed microscopy and live-cell imaging during the synchronous transition between life cycle stages revealed that in stumpy forms, TbPIP39 is located at a periflagellar pocket site closely associated with TbVAP, which defines the flagellar pocket endoplasmic reticulum. TbPTP1 is also located at the same site in stumpy forms, as is REG9.1, a regulator of stumpy-enriched mRNAs. This site provides a molecular node for the interaction between TbPTP1 and TbPIP39. Within 30 min of the initiation of differentiation, TbPIP39 relocates to glycosomes, whereas TbPTP1 disperses to the cytosol. Overall, the study identifies a “stumpy regulatory nexus” (STuRN) that coordinates the molecular components of life cycle signaling and glycosomal development during transmission of Trypanosoma brucei. IMPORTANCE African trypanosomes are parasites of sub-Saharan Africa responsible for both human and animal disease. The parasites are transmitted by tsetse flies, and completion of their life cycle involves progression through several development steps. The initiation of differentiation between blood and tsetse fly forms is signaled by a phosphatase cascade, ultimately trafficked into peroxisome-related organelles called glycosomes that are unique to this group of organisms. Glycosomes undergo substantial remodeling of their composition and function during the differentiation step, but how this is regulated is not understood. Here we identify a cytological site where the signaling molecules controlling differentiation converge before the dispersal of one of them into glycosomes. In combination, the study provides the first insight into the spatial coordination of signaling pathway components in trypanosomes as they undergo cell-type differentiation.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 683 ◽  
Author(s):  
Terry K. Smith ◽  
Frédéric Bringaud ◽  
Derek P. Nolan ◽  
Luisa M. Figueiredo

Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness, Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Yijian Qiu ◽  
Jillian E. Milanes ◽  
Jessica A. Jones ◽  
Rooksana E. Noorai ◽  
Vijay Shankar ◽  
...  

ABSTRACT The African trypanosome has evolved mechanisms to adapt to changes in nutrient availability that occur during its life cycle. During transition from mammalian blood to insect vector gut, parasites experience a rapid reduction in environmental glucose. Here we describe how pleomorphic parasites respond to glucose depletion with a focus on parasite changes in energy metabolism and growth. Long slender bloodstream form parasites were rapidly killed as glucose concentrations fell, while short stumpy bloodstream form parasites persisted to differentiate into the insect-stage procyclic form parasite. The rate of differentiation was lower than that triggered by other cues but reached physiological rates when combined with cold shock. Both differentiation and growth of resulting procyclic form parasites were inhibited by glucose and nonmetabolizable glucose analogs, and these parasites were found to have upregulated amino acid metabolic pathway component gene expression. In summary, glucose transitions from the primary metabolite of the blood-stage infection to a negative regulator of cell development and growth in the insect vector, suggesting that the hexose is not only a key metabolic agent but also an important signaling molecule. IMPORTANCE As the African trypanosome Trypanosoma brucei completes its life cycle, it encounters many different environments. Adaptation to these environments includes modulation of metabolic pathways to parallel the availability of nutrients. Here, we describe how the blood-dwelling life cycle stages of the African trypanosome, which consume glucose to meet their nutritional needs, respond differently to culture in the near absence of glucose. The proliferative long slender parasites rapidly die, while the nondividing short stumpy parasite remains viable and undergoes differentiation to the next life cycle stage, the procyclic form parasite. Interestingly, a sugar analog that cannot be used as an energy source inhibited the process. Furthermore, the growth of procyclic form parasite that resulted from the event was inhibited by glucose, a behavior that is similar to that of parasites isolated from tsetse flies. Our findings suggest that glucose sensing serves as an important modulator of nutrient adaptation in the parasite.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Rebecca J. Hall ◽  
Lindsey A. Flanagan ◽  
Michael J. Bottery ◽  
Vicki Springthorpe ◽  
Stephen Thorpe ◽  
...  

ABSTRACTThe tsetse fly is the insect vector for theTrypanosoma bruceiparasite, the causative agent of human African trypanosomiasis. The colonization and spread of the trypanosome correlate positively with the presence of a secondary symbiotic bacterium,Sodalis glossinidius. The metabolic requirements and interactions of the bacterium with its host are poorly understood, and herein we describe a metabolic model ofS. glossinidiusmetabolism. The model enabled the design and experimental verification of a defined medium that supportsS. glossinidiusgrowthex vivo. This has been used subsequently to analyzein vitroaspects ofS. glossinidiusmetabolism, revealing multiple unique adaptations of the symbiont to its environment. Continued dependence on a sugar, and the importance of the chitin monomerN-acetyl-d-glucosamine as a carbon and energy source, suggests adaptation to host-derived molecules. Adaptation to the amino acid-rich blood diet is revealed by a strong dependence onl-glutamate as a source of carbon and nitrogen and by the ability to rescue a predictedl-arginine auxotrophy. Finally, the selective loss of thiamine biosynthesis, a vitamin provided to the host by the primary symbiontWigglesworthia glossinidia, reveals an intersymbiont dependence. The reductive evolution ofS. glossinidiusto exploit environmentally derived metabolites has resulted in multiple weaknesses in the metabolic network. These weaknesses may become targets for reagents that inhibitS. glossinidiusgrowth and aid the reduction of trypanosomal transmission.IMPORTANCEHuman African trypanosomiasis is caused by theTrypanosoma bruceiparasite. The tsetse fly vector is of interest for its potential to prevent disease spread, as it is essential forT. bruceilife cycle progression and transmission. The tsetse’s mutualistic endosymbiontSodalis glossinidiushas a link to trypanosome establishment, providing a disease control target. Here, we describe a new, experimentally verified model ofS. glossinidiusmetabolism. This model has enabled the development of a defined growth medium that was used successfully to test aspects ofS. glossinidiusmetabolism. We presentS. glossinidiusas uniquely adapted to life in the tsetse, through its reliance on the blood diet and host-derived sugars. Additionally,S. glossinidiushas adapted to the tsetse’s obligate symbiontWigglesworthia glossinidiaby scavenging a vitamin it produces for the insect. This work highlights the use of metabolic modeling to design defined growth media for symbiotic bacteria and may provide novel inhibitory targets to block trypanosome transmission.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sarah Schuster ◽  
Jaime Lisack ◽  
Ines Subota ◽  
Henriette Zimmermann ◽  
Christian Reuter ◽  
...  

African trypanosomes cause sleeping sickness in humans and nagana in cattle. These unicellular parasites are transmitted by the bloodsucking tsetse fly. In the mammalian host's circulation, proliferating slender stage cells differentiate into cell cycle-arrested stumpy stage cells when they reach high population densities. This stage transition is thought to fulfil two main functions: first, it auto-regulates the parasite load in the host; second, the stumpy stage is regarded as the only stage capable of successful vector transmission. Here, we show that proliferating slender stage trypanosomes express the mRNA and protein of a known stumpy stage marker, complete the complex life cycle in the fly as successfully as the stumpy stage, and require only a single parasite for productive infection. These findings suggest a reassessment of the traditional view of the trypanosome life cycle. They may also provide a solution to a long-lasting paradox, namely the successful transmission of parasites in chronic infections, despite low parasitemia.


mSphere ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Jason Carnes ◽  
Suzanne M. McDermott ◽  
Kenneth Stuart

ABSTRACT Editosomes are the multiprotein complexes that catalyze the insertion and deletion of uridines to create translatable mRNAs in the mitochondria of kinetoplastids. Recognition and cleavage of a broad diversity of RNA substrates in vivo require three functionally distinct RNase III-type endonucleases, as well as five additional editosome proteins that contain noncatalytic RNase III domains. RNase III domains have recently been identified in the editosome accessory proteins KREPB9 and KREPB10, suggesting a role related to editing endonuclease function. In this report, we definitively show that KREPB9 and KREPB10 are not essential in either bloodstream-form parasites (BF) or procyclic-form parasites (PF) by creating null or conditional null cell lines. While preedited and edited transcripts are largely unaffected by the loss of KREPB9 in both PF and BF, loss of KREPB10 produces distinct responses in BF and PF. BF cells lacking KREPB10 also lack edited CYb, while PF cells have increased edited A6, RPS12, ND3, and COII after loss of KREPB10. We also demonstrate that mutation of the RNase III domain of either KREPB9 or KREPB10 results in decreased association with ~20S editosomes. Editosome interactions with KREPB9 and KREPB10 are therefore mediated by the noncatalytic RNase III domain, consistent with a role in endonuclease specialization in Trypanosoma brucei. IMPORTANCE Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness. U insertion/deletion RNA editing in T. brucei generates mature mitochondrial mRNAs. Editing is essential for survival in mammalian hosts and tsetse fly vectors and is differentially regulated during the parasite life cycle. Three multiprotein “editosomes,” typified by exclusive RNase III endonucleases that act at distinct sites, catalyze editing. Here, we show that editosome accessory proteins KREPB9 and KREPB10 are not essential for mammalian blood- or insect-form parasite survival but have specific and differential effects on edited RNA abundance in different stages. We also characterize KREPB9 and KREPB10 noncatalytic RNase III domains and show they are essential for editosome association, potentially via dimerization with RNase III domains in other editosome proteins. This work enhances the understanding of distinct editosome and accessory protein functions, and thus differential editing, during the parasite life cycle and highlights the importance of RNase III domain interactions to editosome architecture.


mBio ◽  
2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Rita V. M. Rio ◽  
Rebecca E. Symula ◽  
Jingwen Wang ◽  
Claudia Lohs ◽  
Yi-neng Wu ◽  
...  

ABSTRACT Ancient endosymbionts have been associated with extreme genome structural stability with little differentiation in gene inventory between sister species. Tsetse flies (Diptera: Glossinidae) harbor an obligate endosymbiont, Wigglesworthia, which has coevolved with the Glossina radiation. We report on the ~720-kb Wigglesworthia genome and its associated plasmid from Glossina morsitans morsitans and compare them to those of the symbiont from Glossina brevipalpis. While there was overall high synteny between the two genomes, a large inversion was noted. Furthermore, symbiont transcriptional analyses demonstrated host tissue and development-specific gene expression supporting robust transcriptional regulation in Wigglesworthia, an unprecedented observation in other obligate mutualist endosymbionts. Expression and immunohistochemistry confirmed the role of flagella during the vertical transmission process from mother to intrauterine progeny. The expression of nutrient provisioning genes (thiC and hemH) suggests that Wigglesworthia may function in dietary supplementation tailored toward host development. Furthermore, despite extensive conservation, unique genes were identified within both symbiont genomes that may result in distinct metabolomes impacting host physiology. One of these differences involves the chorismate, phenylalanine, and folate biosynthetic pathways, which are uniquely present in Wigglesworthia morsitans. Interestingly, African trypanosomes are auxotrophs for phenylalanine and folate and salvage both exogenously. It is possible that W. morsitans contributes to the higher parasite susceptibility of its host species. IMPORTANCE Genomic stasis has historically been associated with obligate endosymbionts and their sister species. Here we characterize the Wigglesworthia genome of the tsetse fly species Glossina morsitans and compare it to its sister genome within G. brevipalpis. The similarity and variation between the genomes enabled specific hypotheses regarding functional biology. Expression analyses indicate significant levels of transcriptional regulation and support development- and tissue-specific functional roles for the symbiosis previously not observed in obligate mutualist symbionts. Retention of the genetically expensive flagella within these small genomes was demonstrated to be significant in symbiont transmission and tailored to the unique tsetse fly reproductive biology. Distinctions in metabolomes were also observed. We speculate an additional role for Wigglesworthia symbiosis where infections with pathogenic trypanosomes may depend upon symbiont species-specific metabolic products and thus influence the vector competence traits of different tsetse fly host species.


Sign in / Sign up

Export Citation Format

Share Document