extrinsic incubation period
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 4)

Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 20
Author(s):  
Bárbara Aparecida Chaves ◽  
Raquel Soares Maia Godoy ◽  
Thaís Bonifácio Campolina ◽  
Ademir Bentes Vieira Júnior ◽  
Andréia da Costa Paz ◽  
...  

The successful spread and maintenance of the dengue virus (DENV) in mosquito vectors depends on their viral infection susceptibility, and parameters related to vector competence are the most valuable for measuring the risk of viral transmission by mosquitoes. These parameters may vary according to the viral serotype in circulation and in accordance with the geographic origin of the mosquito population that is being assessed. In this study, we investigated the effect of DENV serotypes (1–4) with regards to the infection susceptibility of five Brazilian Ae. aegypti populations from Manaus, the capital of the state of Amazonas, Brazil. Mosquitoes were challenged by oral infection with the DENV serotypes and then tested for the presence of the arbovirus using quantitative PCR at 14 days post-infection, which is the time point that corresponds to the extrinsic incubation period of Ae. aegypti when reared at 28 °C. Thus, we were able to determine the infection patterns for DENV-1, -2, -3 and -4 in the mosquito populations. The mosquitoes had both interpopulation and inter-serotype variation in their viral susceptibilities. All DENV serotypes showed a similar tendency to accumulate in the body in a greater amount than in the head/salivary gland (head/SG), which does not occur with other flaviviruses. For DENV-1, DENV-3, and DENV-4, the body viral load varied among populations, but the head/SG viral loads were similar. Differently for DENV-2, both body and head/SG viral loads varied among populations. As the lack of phenotypic homogeneity represents one of the most important reasons for the long-term fight against dengue incidence, we expect that this study will help us to understand the dynamics of the infection patterns that are triggered by the distinct serotypes of DENV in mosquitoes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Luis M. Hernández-Triana ◽  
Arran J. Folly ◽  
Elsa Barrero ◽  
Sarah Lumley ◽  
Maria del Mar Fernández de Marco ◽  
...  

Abstract Background A number of zoonotic mosquito-borne viruses have emerged in Europe in recent decades. Batai virus (BATV), a member of the genus Orthobunyavirus, is one example of a relatively newly emerged mosquito-borne virus, having been detected in mosquitoes and livestock. We conducted vector competency studies on three mosquito species at a low temperature to assess whether Aedes and Culex mosquito species are susceptible to infection with BATV. Methods Colonised lines of Aedes aegypti and Culex pipiens and a wild-caught species, Aedes detritus, were orally inoculated with BATV strain 53.2, originally isolated from mosquitoes trapped in Germany in 2009. Groups of blood-fed female mosquitoes were maintained at 20 °C for 7 or 14 days. Individual mosquitoes were screened for the presence of BATV in body, leg and saliva samples for evidence of infection, dissemination and transmission, respectively. BATV RNA was detected by reverse transcription-PCR, and positive results confirmed by virus isolation in Vero cells. Results Aedes detritus was highly susceptible to BATV, with an infection prevalence of ≥ 80% at both measurement time points. Disseminated infections were recorded in 30.7–41.6% of Ae. detritus, and evidence of virus transmission with BATV in saliva samples (n = 1, days post-infection: 14) was observed. Relatively lower rates of infection for Ae. aegypti and Cx. pipiens were observed, with no evidence of virus dissemination or transmission at either time point. Conclusions This study shows that Ae. detritus may be a competent vector for BATV at 20 °C, whereas Ae. aegypti and Cx. pipiens were not competent. Critically, the extrinsic incubation period appears to be ≤  7 days for Ae. detritus, which may increase the onward transmissibility potential of BATV in these populations. Graphical Abstract


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1252
Author(s):  
Rebecca A. Zimler ◽  
Barry W. Alto

The Asian genotype of Zika virus (ZIKV) emerged in Brazil in 2015 and subsequently spread throughout the Americas. In July 2016, Florida experienced its first locally acquired ZIKV infection in the continental U.S. Concerns about health risks from ZIKV infection have increased the need to investigate the interactions between potential mosquito vectors and ZIKV. The time it takes for an arbovirus to propagate within a mosquito, and become transmissible, is the extrinsic incubation period (EIP). The EIP for potential mosquito vectors in Florida is unknown. To address this gap in the understanding of ZIKV epidemiology, Florida Aedes aegypti (L.) and Ae. albopictus (Skuse) were orally exposed to ZIKV infected blood meals and fully engorged mosquitoes were held at a constant temperature of 28 °C through the duration of the experiment. Saliva expectorates were collected from cohorts of mosquitoes and tested for the presence of ZIKV at three-day intervals over a period of 24 days to allow for an evaluation of the EIP of the emergent Asian lineage of ZIKV. High rates of infected bodies in Ae. albopictus (75–94%) and Ae. aegypti (68–86%) were observed throughout the incubation period, which did not differ by species. Higher rates of disseminated infection were observed later during the incubation period but did not differ between species. We calculated the 50% EIP to be shorter in Ae. albopictus than Ae. aegypti (16.2 and 18.2 days post infection, respectively). The competence for ZIKV observed in both species may contribute to high rates of ZIKV transmission in Florida populations.


2021 ◽  
Author(s):  
Lynn B. Martin ◽  
Meredith E Kernbach ◽  
Kyle Koller ◽  
Nathan D. Burkett-Cadena ◽  
Tom Unnasch

Hormones that help hosts cope with stressors also affect how hosts regulate the processes that influence their susceptibility to parasites as well as their propensity to transmit pathogens to other hosts and vectors. In birds, corticosterone (CORT), influences timing of activity, feeding behaviors, and various immune defenses that influence the number and outcomes of host interactions with vectors and parasites. No study to our knowledge, though, has investigated whether CORT variation in hosts affects the extrinsic incubation period (EIP) of a vector for a virus, one of the strongest drivers of vector-borne disease cycles. Our goal here was to discern whether CORT in zebra finches (Taeniopygia guttata) affected EIP for West Nile virus (WNV) in the mosquito, Culex quinquefasciatus, a common vector of WNV and other infections in the southern US. We experimentally manipulated CORT in birds, infected them with WNV, and then investigated whether EIP differed between vectors fed on CORT-treated or control birds. Although CORT enhanced WNV viremia in hosts, as we have observed previously, we found no effects of CORT on vector EIP or post-feeding mortality rates. These results, plus our prior observations that CORT enhances host attractiveness, indicate that some but not all stages of host-vector-virus interactions are sensitive to host stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Edwige Guissou ◽  
Jessica L. Waite ◽  
Matthew Jones ◽  
Andrew S. Bell ◽  
Eunho Suh ◽  
...  

AbstractDespite its epidemiological importance, the time Plasmodium parasites take to achieve development in the vector mosquito (the extrinsic incubation period, EIP) remains poorly characterized. A novel non-destructive assay designed to estimate EIP in single mosquitoes, and more broadly to study Plasmodium–Anopheles vectors interactions, is presented. The assay uses small pieces of cotton wool soaked in sugar solution to collect malaria sporozoites from individual mosquitoes during sugar feeding to monitor infection status over time. This technique has been tested across four natural malaria mosquito species of Africa and Asia, infected with Plasmodium falciparum (six field isolates from gametocyte-infected patients in Burkina Faso and the NF54 strain) and across a range of temperatures relevant to malaria transmission in field conditions. Monitoring individual infectious mosquitoes was feasible. The estimated median EIP of P. falciparum at 27 °C was 11 to 14 days depending on mosquito species and parasite isolate. Long-term individual tracking revealed that sporozoites transfer onto cotton wool can occur at least until day 40 post-infection. Short individual EIP were associated with short mosquito lifespan. Correlations between mosquito/parasite traits often reveal trade-offs and constraints and have important implications for understanding the evolution of parasite transmission strategies.


2021 ◽  
Vol 17 (2) ◽  
pp. e1008658
Author(s):  
Isaac J. Stopard ◽  
Thomas S. Churcher ◽  
Ben Lambert

During sporogony, malaria-causing parasites infect a mosquito, reproduce and migrate to the mosquito salivary glands where they can be transmitted the next time blood feeding occurs. The time required for sporogony, known as the extrinsic incubation period (EIP), is an important determinant of malaria transmission intensity. The EIP is typically estimated as the time for a given percentile, x, of infected mosquitoes to develop salivary gland sporozoites (the infectious parasite life stage), which is denoted by EIPx. Many mechanisms, however, affect the observed sporozoite prevalence including the human-to-mosquito transmission probability and possibly differences in mosquito mortality according to infection status. To account for these various mechanisms, we present a mechanistic mathematical model, which explicitly models key processes at the parasite, mosquito and observational scales. Fitting this model to experimental data, we find greater variation in the EIP than previously thought: we estimated the range between EIP10 and EIP90 (at 27°C) as 4.5 days compared to 0.9 days using existing statistical methods. This pattern holds over the range of study temperatures included in the dataset. Increasing temperature from 21°C to 34°C decreased the EIP50 from 16.1 to 8.8 days. Our work highlights the importance of mechanistic modelling of sporogony to (1) improve estimates of malaria transmission under different environmental conditions or disease control programs and (2) evaluate novel interventions that target the mosquito life stages of the parasite.


2020 ◽  
Author(s):  
Edwige Guissou ◽  
Jessica L. Waite ◽  
Matthew Jones ◽  
Andrew S. Bell ◽  
Eunho Suh ◽  
...  

AbstractDespite its epidemiological importance, the time Plasmodium parasites take to achieve development in the vector mosquito (the extrinsic incubation period, EIP) remains poorly characterized. A novel non-destructive assay designed to estimate EIP in single mosquitoes, and more broadly to study Plasmodium – Anopheles vectors interactions, is presented. The assay uses small pieces of cotton wool soaked in sugar solution to collect malaria sporozoites from individual mosquitoes during sugar feeding to monitor infection status over time. This technique has been tested across four natural malaria mosquito species of Africa and Asia, six parasite isolates of Plasmodium falciparum, and across a range of temperatures relevant to malaria transmission in field conditions. We find that monitoring individual infectious mosquitoes is feasible, although due to the frequency of mosquito sugar feeding and inter-individual variation in infection intensity, there is inherent risk that this technique will result in some false negatives. The sensitivity rate ranged from 0.27 to 0.81 depending on mosquito species and on infection intensity in mosquitoes used to collect saliva. Using this non-destructive technique, the estimated median extrinsic incubation period of P. falciparum at 27°C was 11 to 14 days depending on mosquito species and parasite isolate. Long-term individual tracking also revealed that sporozoite transfer onto cotton wool can occur at least until day 40 post-infection. In addition to contributing to a better understanding of EIP and mosquito to human transmission with implications for improving epidemiological models, this technique also allows to link different transmission traits at the mosquito individual level. As one example, we found a significant relationship between EIP and mosquito lifespan, with short individual EIP associated with short mosquito lifespan. Correlations between mosquito/parasite traits often reveal trade-offs and constraints and have important implications for understanding the evolution of parasite transmission strategies.


2020 ◽  
Author(s):  
Fernando Merwaiss ◽  
Claudia V. Filomatori ◽  
Yasutsugu Susuki ◽  
Eugenia S. Bardossy ◽  
Diego E. Alvarez ◽  
...  

Chikungunya virus (CHIKV) is a reemerging and rapidly spreading pathogen transmitted by mosquitoes. The emergence of new epidemic variants of the virus is associated with genetic evolutionary traits, including duplication of repeated RNA elements in the 3′UTR that seemingly favor transmission by mosquitoes. The transmission potential of a given variant results from a complex interplay between virus populations and anatomical tissue barriers in the mosquito. Here, we used the wild type CHIKV Caribbean strain and an engineered mutant harboring a deletion in the 3′UTR to dissect the interactions of virus variants with the anatomical barriers that impede transmission during the replication cycle of the virus in Aedes mosquitos. Compared to the 3′UTR mutant, we observed that the wild type virus had a shorter extrinsic incubation period after an infectious blood meal and was expectorated into mosquito saliva much more efficiently. We found that high viral titers in the midgut are not sufficient to escape the midgut escape barrier. Rather, viral replication kinetics play a crucial role in determining midgut escape and transmission ability of CHIKV. Finally, competition tests in mosquitoes co-infected with wild type and mutant viruses revealed that both viruses successfully colonized the midgut, but wild type viruses effectively displaced mutant viruses during systemic infection due to their greater efficiency of escaping from the midgut into secondary tissues. Overall, our results uncover a link between CHIKV replication kinetics and the effect of bottlenecks on population diversity, as slow replicating variants are less able to overcome the midgut escape barrier. Importance It is well established that selective pressures in mosquito vectors impose population bottlenecks for arboviruses. Here, we used a CHIKV Caribbean lineage mutant carrying a deletion in the 3′UTR to study host-virus interactions in vivo in the epidemic mosquito vector, Aedes aegypti. We found that the mutant virus had a delayed replication rate in mosquitoes, which lengthened the extrinsic incubation period (EIP), and reduced fitness relative to the wild type virus. As a result, the mutant virus displayed a reduced capacity to cross anatomical barriers during the infection cycle in mosquitoes, thus reducing the virus transmission rate. Our findings show how selective pressures act on CHIKV non-coding regions to select variants with shorter EIPs that are preferentially transmitted by the mosquito vector.


2020 ◽  
Vol 7 (10) ◽  
pp. 192173 ◽  
Author(s):  
Lauren M. Childs ◽  
Olivia F. Prosper

Mosquito-borne diseases, in particular malaria, have a significant burden worldwide leading to nearly half a million deaths each year. The malaria parasite requires a vertebrate host, such as a human, and a vector host, the Anopheles mosquito, to complete its full life cycle. Here, we focus on the parasite dynamics within the vector to examine the first appearance of sporozoites in the salivary glands, which indicates a first time of infectiousness of mosquitoes. The timing of this period of pathogen development in the mosquito until transmissibility, known as the extrinsic incubation period, remains poorly understood. We develop compartmental models of within-mosquito parasite dynamics fitted with experimental data on oocyst and sporozoite counts. We find that only a fraction of oocysts burst to release sporozoites and bursting must be delayed either via a time-dependent function or a gamma-distributed set of compartments. We use Bayesian inference to estimate distributions of parameters and determine that bursting rate is a key epidemiological parameter. A better understanding of the factors impacting the extrinsic incubation period will aid in the development of interventions to slow or stop the spread of malaria.


2020 ◽  
Author(s):  
Isaac J. Stopard ◽  
Thomas S. Churcher ◽  
Ben Lambert

AbstractDuring sporogony, malaria-causing parasites infect a mosquito, reproduce and migrate to the mosquito salivary glands where they can be transmitted the next time blood-feeding occurs. The time required for sporogony, or extrinsic incubation period (EIP), is a crucial determinant of malaria transmission intensity. The EIP is typically estimated as the time for a given percentile of infected mosquitoes to have salivary gland sporozoites (the infectious parasite life stage). Many mechanisms, however, affect the observed sporozoite prevalence including the human-to-mosquito transmission probability and possibly differences in mosquito mortality according to infection status. To account for these various mechanisms, we present a mechanistic mathematical model (“mSOS”), which explicitly models key processes at the parasite, mosquito and observational scales. Fitting this model to experimental data, we find greater variation in EIP than previously thought: we estimated the range between two percentiles of the distribution, EIP10–EIP90 (at 27°C), as 4.5 days, compared to 0.9 days using existing methods. This pattern holds over the range of study temperatures included in the dataset. Increasing temperature from 21°C to 34°C decreased the EIP50 from 16.1 to 8.8 days and the human-to-mosquito transmission probability from 84% to 42%. Our work highlights the importance of mechanistic modelling of sporogony to (1) improve estimates of malaria transmission under different environmental conditions or disease control programs and (2) evaluate novel interventions that target the mosquito life stages of the parasite.Author summaryAnopheles mosquitoes become infected with malaria-causing parasites when blood feeding on an infectious human host. The parasites then process through a number of life stages, which begin in the mosquito gut and end in the salivary glands, where the newly formed infectious parasites can be transmitted to another host the next time a mosquito blood-feeds. The large variability in parasite numbers and development times that exists between mosquitoes, environments and parasites, mean that understanding parasite population dynamics from individual mosquito dissections is difficult. Here, we introduce a mathematical model of the mosquito life stages of parasites that mimics key characteristics of the biology. We show that the model’s parameters can be chosen so that its predictions correspond with experimental observations. In doing so, we estimate key system characteristics that are crucial determinants of malaria transmission intensity. Our work is a step towards a realistic model of within-mosquito parasite dynamics, which is increasingly important given that many recently proposed disease interventions specifically target mosquito life stages of the parasite.


Sign in / Sign up

Export Citation Format

Share Document