Accurate Approximate Methods for the Fully Developed Flow of Shear-Thinning Fluids in Ducts of Noncircular Cross Section

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Kenneth J. Ruschak ◽  
Steven J. Weinstein

The fully developed laminar flow of Non-Newtonian fluids in ducts has broad application in engineering. The power-law viscosity model is utilized most often in the engineering literature, but it is deficient for many fluids as it does not admit limiting Newtonian viscosities at low and high shear rates. The goal of this work is to demonstrate two approximate but accurate and efficient methods for computing the pressure gradient in ducts of noncircular cross section for shear-thinning fluids following a general viscosity curve. Both methods predict the pressure gradient to better than 1% as established by full numerical solutions for ten cross-sectional shapes, a result representing an order-of-magnitude improvement over previous approximate methods. In the first method, an approach recently proposed and demonstrated to be accurate for a circular duct is shown to be equally applicable to noncircular ducts. In the second method, a widely used approach for noncircular ducts based on a generalization of the Rabinowitsch–Mooney equation is improved through an alternate evaluation of its parameters. Both methods require one-time numerical solutions of the power-law viscosity model for a duct shape of interest, and the necessary results are tabulated for the ten cross-sectional shapes analyzed. It is additionally demonstrated that the pressure-gradient error of the second method is approximately halved by simply replacing the hydraulic diameter with a viscous diameter obtained from the Hagen–Poiseuille equation.

Author(s):  
Khaled J. Hammad

The impact of inflow conditions on the flow structure and evolution characteristics of annular flows of Newtonian and shear-thinning fluids through a sudden pipe expansion are studied. Numerical solutions to the elliptic form of the governing equations along with the power-law constitutive equation were obtained using a finite-difference scheme. A parametric study is performed to reveal the influence of inflow velocity profiles, annular diameter ratio, k, and power-law index, n, over the following range of parameters: inflow velocity profile = {fully-developed, uniform}, k = {0, 0.5, 0.7} and n = {1, 0.8, 0.6}. Flow separation and entrainment, downstream of the expansion plane, creates central and a much larger outer recirculation regions. The results demonstrate the influence of inflow conditions, annular diameter ratio, and rheology on the extent and intensity of both flow recirculation regions, the wall shear stress distribution, and the evolution and redevelopment characteristics of the flow downstream the expansion plane. Fully-developed inflows result in larger reattachment and redevelopment lengths as well as more intense recirculation, within the central and corner regions, in comparison with uniform inflow conditions.


Author(s):  
Ehsan Sadeghi ◽  
Majid Bahrami ◽  
Ned Djilali

In many practical instances such as basic design, parametric study, and optimization analysis of thermal systems, it is often very convenient to have closed form relations to obtain the trends and a reasonable estimate of the Nusselt number. However, finding exact solutions for many practical singly-connected cross-sections, such as trapezoidal microchannels, is complex. In the present study, the square root of cross-sectional area is proposed as the characteristic length scale for Nusselt number. Using analytical solutions of rectangular, elliptical, and triangular ducts, a compact model for estimation of Nusselt number of fully-developed, laminar flow in microchannels of arbitrary cross-sections with “H1” boundary condition (constant axial wall heat flux with constant peripheral wall temperature) is developed. The proposed model is only a function of geometrical parameters of the cross-section, i.e., area, perimeter, and polar moment of inertia. The present model is verified against analytical and numerical solutions for a wide variety of cross-sections with a maximum difference on the order of 9%.


2014 ◽  
Vol 751 ◽  
pp. 184-215
Author(s):  
Liyan Yu ◽  
John Hinch

AbstractWe study the solitary wave solutions in a thin film of a power-law fluid coating a vertical fibre. Different behaviours are observed for shear-thickening and shear-thinning fluids. For shear-thickening fluids, the solitary waves are larger and faster when the reduced Bond number is smaller. For shear-thinning fluids, two branches of solutions exist for a certain range of the Bond number, where the solitary waves are larger and faster on one and smaller and slower on the other as the Bond number decreases. We carry out an asymptotic analysis for the large and fast-travelling solitary waves to explain how their speeds and amplitudes change with the Bond number. The analysis is then extended to examine the stability of the two branches of solutions for the shear-thinning fluids.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Mehdi Karabi ◽  
Ali Jabari Moghadam

The hydrodynamic and thermal characteristics of electroosmotic and pressure-driven flows of power-law fluids are examined in a semicircular microchannel under the constant wall heat flux condition. For sufficiently large values of the electrokinetic radius, the Debye length is thin; the active flow within the electric double layer (EDL) drags the rest of the liquid due to frictional forces arising from the fluid viscosity, and consequently a plug-like velocity profile is attained. The velocity ratio can affect the pure electrokinetic flow as well as the flow rate depending on the applied pressure gradient direction. Since the effective viscosity of shear-thinning fluids near the wall is quite small compared to the shear-thickening fluids, the former exhibits higher dimensionless velocities than the later close to the wall; the reverse is true at the middle section. Poiseuille number increases with increasing the flow behavior index and/or the electrokinetic radius. Due to the comparatively stronger axial advection and radial diffusion in shear-thinning fluids, better temperature uniformity is achieved in the channel. Reduction of Nusselt number continues as far as the fully developed region where it remains unchanged; as the electrokinetic radius tends to infinity, Nusselt number approaches a particular value (not depending on the flow behavior index).


2021 ◽  
pp. 1293-1306
Author(s):  
Mohammed Ali Murad ◽  
Ahmed M. Abdulhadi

The peristaltic transport of power-law fluid in an elastic tapered tube with variable cross-section induced by dilating peristaltic wave is studied. The exact solution of the expression for axial velocity, radial velocity, stream function, local shear stress, volume of flow rate and pressure gradient are obtained under the assumption of long wavelength and low Reynolds number. The effects of all parameters that appear in the problem are analyzed through graphs. The results showed that the flux is sinusoidal in nature and it is an increasing function with the increase of  whereas it is a decreasing function with the increase of . An opposite behavior for shear strain is noticed compared to pressure gradient.  Finally, trapping phenomenon is presented to explain the physical behavior of various parameters. It is noted that the size of the trapping bolus increases with increasing  whereas it decreases as  increases. MATHEMATICA software is used to plot all figures.


CALCOLO ◽  
2021 ◽  
Vol 59 (1) ◽  
Author(s):  
Pascal Heid ◽  
Endre Süli

AbstractWe explore the convergence rate of the Kačanov iteration scheme for different models of shear-thinning fluids, including Carreau and power-law type explicit quasi-Newtonian constitutive laws. It is shown that the energy difference contracts along the sequence generated by the iteration. In addition, an a posteriori computable contraction factor is proposed, which improves, on finite-dimensional Galerkin spaces, previously derived bounds on the contraction factor in the context of the power-law model. Significantly, this factor is shown to be independent of the choice of the cut-off parameters whose use was proposed in the literature for the Kačanov iteration applied to the power-law model. Our analytical findings are confirmed by a series of numerical experiments.


Author(s):  
Oswaldo Nun˜ez ◽  
Armando J. Blanco

Some industrials processes are associated with flow of non-Newtonian fluids in annular spaces. Examples are found in oil industry and food industrial processing. In some cases, gravitational forces cause internal pipe deflection and, consequently, the eccentricity changes along of axis of the annular space. So, flow patterns are modified respect to those found in constant eccentricity annular spaces. Current industrial practice consists on extrapolate predictions based on flow patterns from the constant eccentricity critical scenario, corresponding to the critical region where both boundaries are closer, to the variable eccentricity actual scenario. In practice, using this approach, flow pattern predictions could significantly deviate from the actual profile, and variables such as shear stress at walls or pressure gradient could not be estimated with adequate accuracy. This work consists of a Computational Fluid Dynamics study, aimed to state the implications of evaluating flow patterns, assuming constant eccentricity, in opposition to a more realistic scenario, considering deflection path along the annular space, using a commercial code. A particular application is made to mud removal during well cementing operations in oil industry. For the casing in the hole, the deflection equation is solved and eccentricity along of the system axis is found. Flow of a non-Newtonian fluid described by Power Law model is considered. Oil industry typical conditions are considered for fluid density, rheological parameters, flow rates, casing and hole sizes, and annulus eccentricity. The flow regime was considered laminar. Numerical model capability to reproduce accurately flow patterns in these conditions was assured by comparison with others analytical-numerical solutions for concentric systems. Results show that local Reynolds number Re, shear stress τw and pressure gradient predictions G, under local eccentricity variations, differ from those under constant eccentricity. Differences in Re and τw show a maximum for eccentricity ranging from 60% to 80%, for all flow conditions whereas for G, this difference increases as casing deflection does it. When variable eccentricity models are compared to constant eccentricity one, the latter approach underestimates Re and τw along the narrowest section of the annuli, whereas overestimates the same features along the widest clearance. Additionally, considerably higher variations between these two models are taking place along the narrowest section compared to the variations arising on the widest annular section. When applied to well cementing processes, these results show that considering the most realistic scenario may impact significantly the flow pattern prediction on the annulus during primary cementing operations. Therefore, the quality of the cement job may be greatly compromised.


Sign in / Sign up

Export Citation Format

Share Document