salt diapirism
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Elkhedr Ibrahim ◽  
Saad Mogren ◽  
Saleh Qaysi ◽  
Kamal Abdelrahman ◽  
Habes Ghrefat ◽  
...  

Author(s):  
Johannes Albert ◽  
Maximilian Schärf ◽  
Frieder Enzmann ◽  
Martin Waltl ◽  
Frank Sirocko

AbstractThis paper presents radon flux profiles from four regions in Schleswig–Holstein (Northern Germany). Three of these regions are located over deep-rooted tectonic faults or salt diapirs and one is in an area without any tectonic or halokinetic activity, but with steep topography. Contrary to recently published studies on spatial patterns of soil radon gas concentration we measured flux of radon from soil into the atmosphere. All radon devices of each profile were deployed simultaneously to avoid inconsistencies due to strong diurnal variations of radon exhalation. To compare data from different seasons, values had to be normalized. Observed radon flux patterns are apparently related to the mineralogical composition of the Quaternary strata (particularly to the abundance of reddish granite and porphyry), and its grain size (with a flux maximum in well-sorted sand/silt). Minimum radon flux occurs above non-permeable, clay-rich soil layers. Small amounts of water content in the pore space increase radon flux, whereas excessive water content lessens it. Peak flux values, however, are observed over a deep-rooted fault system on the eastern side of Lake Plön, i.e., at the boundary of the Eastholstein Platform and the Eastholstein Trough. Furthermore, high radon flux values are observed in two regions associated with salt diapirism and near-surface halokinetic faults. These regions show frequent local radon flux maxima, which indicate that the uppermost strata above salt diapirs are very inhomogeneous. Deep-rooted increased permeability (effective radon flux depth) or just the boundaries between permeable and impermeable strata appear to concentrate radon flux. In summary, our radon flux profiles are in accordance with the published evidence of low radon concentrations in the “normal” soils of Schleswig–Holstein. However, very high values of radon flux are likely to occur at distinct locations near salt diapirism at depth, boundaries between permeable and impermeable strata, and finally at the tectonically active flanks of the North German Basin.


AAPG Bulletin ◽  
2021 ◽  
Vol 105 (1) ◽  
pp. 53-63
Author(s):  
Mark G. Rowan ◽  
Katherine A. Giles
Keyword(s):  

2020 ◽  
Author(s):  
Rod Graham ◽  
Adam Csicsek

<p><strong>The Barreme Basin and the Gevaudan diapir - an example of the interplay between compressional tectonics and salt diapirism </strong></p><p><strong> </strong></p><p><strong>Adam Csicsek and Rod Graham</strong></p><p>Imperial College London</p><p><strong> </strong></p><p>Our understanding of the role of salt diapirism in determining the finite geometry of fold and thrust belts has grown apace in the last few years, but the interplay between the two remains a significant problem for structural interpretation. The Gevaudan diapir in the fold and thrust belt of the sub-Alpine chain of Haute Provence is well known and has been documented by numerous eminent alpine structural geologists. Graciansky, Dardot, Mascle, Gidon and Lickorish and Ford have all described and illustrated the geometry and evolution of the structure, and Lickorish and Ford’s interpretation is figured as an example of  diapirism  in a compressional setting by Jackson and Hudec in their text on salt tectonics. We review these various interpretations and present another.</p><p>The differences between the various interpretations say much about the complex interplay of salt diapirism and thin-skinned thrusting and have profound implications for the way we interpret the tectonic and sedimentary evolution of the Barreme basin which lies adjacent to the diapir</p><p>The Barreme basin is a thrust-top fragment of the Provencal foreland basin and has been described in detail from both sedimentological (e.g. Evans and Elliott, 1999) and structural (e.g. Antoni and Meckel, 1997) points of view. Here we make the case that it is also a salt related minibasin - a secondary minibasin developed on a now welded allochthonous Middle Cretaceous salt canopy.  We believe that within the basin it is possible to interpret successive depocentres which may record progressive salt withdrawal. We argue that though thrust loading must be the fundamental driving mechanism responsible for salt movement late in the tectonic history of the region, thrusting has not done much more than modify existing salt related geometry.    </p>


Heliyon ◽  
2017 ◽  
Vol 3 (2) ◽  
pp. e00257 ◽  
Author(s):  
Michel Michaelovitch de Mahiques ◽  
Uri Schattner ◽  
Michael Lazar ◽  
Paulo Yukio Gomes Sumida ◽  
Luiz Antonio Pereira de Souza

Sign in / Sign up

Export Citation Format

Share Document