head injury criterion
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 20)

H-INDEX

9
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5147
Author(s):  
Piotr Kosiński ◽  
Piotr Żach

Statistically, road accidents involving pedestrians occur in the autumn and winter months, when outdoor temperatures reach −30 °C. The research presented in this paper investigates the impact of a pedestrian’s head on laminated windscreen, taking into account the effects of external temperature, heating of the windscreen from the inside, and fatigue of the glass. The automotive laminated windscreen under study is made from two layers of glass and a Polyvinyl Butyral (PVB) resin bonding them together. PVB significantly changes its properties with temperature. The Finite Element Method (FEM) simulations of a pedestrian’s head hitting the windscreen of an Opel Astra II at <−30 °C, +20 °C> were performed. The obtained Head Injury Criterion (HIC) results revealed an almost twofold decrease in safety between +20 °C and −20 °C. The same test was then performed taking into account the heating of the windscreen from the inside and the fatigue of the glass layers. Surprisingly, the highest HIC value of all the cases studied was obtained at −30 °C and heating the windscreen. The nature of safety changes with temperature variation is different for the cases of heating, non-heating, and fatigue of glass layers. Glass fatigue increases pedestrian safety throughout the temperature range analysed.


2021 ◽  
Vol 2021 (9) ◽  
pp. 49-54
Author(s):  
Ol'ga Bondarenko

The purpose of the work is to assess the safety of passenger cars in case of an emergency rollover on the body of railroad tracks. The paper introduces a method for predicting injury of railway transport passengers as a result of swinging over the wagon on the body of railroad tracks. The method of research is mathematical modeling of scenarios of swinging over the wagon on a flat bottom or earth tramp of the railway track. A model of a passenger compartment has been developed, which is supplemented with models of a roomette, hand luggage and an anthropometric dummy. The originality of the work is the use of mannequin models for an accident with the rollover of a compartment car on the body of the railroad tracks and obtaining data on the interaction of fit models and a compartment car. The result of the study is the reported values of possible injury to passengers during an emergency rollover of a passenger car. Namely, the values of the head injury criterion, cervical vertebrae, breast and hips of the crash test dummy have been obtained. In comparison of the two considered scenarios of swinging over the wagon, the value of the head injury criterion for overturning the car on an inclined surface is 15% higher, the neck injury criterion is 30% higher, and the hip and chest injury criterion is 23% higher for mannequins on the upper shelves of the compartment due to their interaction with hand luggage. The obtained values do not exceed critical ones. The most dangerous positions of the mannequin model in the compartment of the car are revealed. Conclusions concerning the sufficient safety of the passenger car are formed and recommendations for the development of additional technical solutions to improve the safety of passenger cars are given.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Nick Draper ◽  
Natalia Kabaliuk ◽  
Danyon Stitt ◽  
Keith Alexander

The purpose of this study was to examine the potential of soft-shelled rugby headgear to reduce linear impact accelerations. A hybrid III head form instrumented with a 3-axis accelerometer was used to assess headgear performance on a drop test rig. Six headgear units were examined in this study: Canterbury Clothing Company (CCC) Ventilator, Kukri, 2nd Skull, N-Pro, and two Gamebreaker headgear units of different sizes (headgears 1–6, respectively). Drop heights were 238, 300, 610, and 912 mm with 5 orientations at each height (forehead, front boss, rear, rear boss, and side). Impact severity was quantified using peak linear acceleration (PLA) and head injury criterion (HIC). All headgear was tested in comparison to a no headgear condition (for all heights). Compared to the no headgear condition, all headgear significantly reduced PLA and HIC at 238 mm (16.2–45.3% PLA and 29.2–62.7% HIC reduction; P < 0.0005 , ηp2 = 0.987–0.991). Headgear impact attenuation lowered significantly as the drop height increased (32.4–5.6% PLA and 50.9–11.7% HIC reduction at 912 mm). There were no significant differences in PLA or HIC reduction between headgear units 1–3. Post hoc testing indicated that headgear units 4–6 significantly outperformed headgear units 1–3 and additionally headgear units 5 and 6 significantly outperformed headgear 4 ( P < 0.05 ). The lowest reduction PLA and HIC was for impacts rear orientation for headgear units 1–4 (3.3 ± 3.6%–11 ± 5.8%). In contrast, headgear units 5 and 6 significantly outperformed all other headgear in this orientation ( P < 0.0005 , ηp2 = 0.982–0.990). Side impacts showed the greatest reduction in PLA and HIC for all headgear. All headgear units tested demonstrated some degree of reduction in PLA and HIC from a linear impact; however, units 4–6 performed significantly better than headgear units 1–3.


2020 ◽  
Vol 28 (10) ◽  
pp. 685-691
Author(s):  
Hyeonseok Kim ◽  
Mingyu Park ◽  
Seongkeun Park ◽  
Shinsun Lee ◽  
Taehee Lee

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 29
Author(s):  
Marcus Dunn ◽  
Dyfan Davies ◽  
John Hart

In youth association football, the use of different size and/or mass footballs might represent a feasible intervention for addressing heading impact severity and player safety concerns. This study assessed the effects of football size and mass on head impacts based on defensive heading in youth football. Three-dimensional trajectories of U16 youth academy free kicks were modelled to derive three impact trajectories, representing defensive heading in youth football. Three football models (standard: S5, standard-light: S5L, and small: S4) impacted an instrumented headform; Head Injury Criterion (HIC15) and Rotational Injury Criterion (RIC15) were calculated. For headform impacts, S4 and S5L footballs yielded lower HIC15 magnitudes than S5 footballs. Further, S4 footballs yielded lower HIC15 and lower RIC15 magnitudes than S5 and S5L footballs. Initial findings indicated that smaller, S4 footballs reduced linear and rotational head injury criteria for impacts representative of defensive heading in youth football.


2020 ◽  
Vol 10 (11) ◽  
pp. 3810
Author(s):  
Younsse Ayoubi ◽  
Med Amine Laribi ◽  
Marc Arsicault ◽  
Saïd Zeghloul

Robots are gaining a foothold day-by-day in different areas of people’s lives. Collaborative robots (cobots) need to display human-like dynamic performance. Thus, the question of safety during physical human–robot interaction (pHRI) arises. Herein, we propose making serial cobots intrinsically compliant to guarantee safe pHRI via our novel designed device, V2SOM (variable stiffness safety-oriented mechanism). Integrating this new device at each rotary joint of the serial cobot ensures a safe pHRI and reduces the drawbacks of making robots compliant. Thanks to its two continuously linked functional modes—high and low stiffness—V2SOM presents a high inertia decoupling capacity, which is a necessary condition for safe pHRI. The high stiffness mode eases the control without disturbing the safety aspect. Once a human–robot (HR) collision occurs, a spontaneous and smooth shift to low stiffness mode is passively triggered to safely absorb the impact. To highlight V2SOM’s effect in safety terms, we consider two complementary safety criteria: impact force (ImpF) criterion and head injury criterion (HIC) for external and internal damage evaluation of blunt shocks, respectively. A pre-established HR collision model is built in Matlab/Simulink (v2018, MathWorks, France) in order to evaluate the latter criterion. This paper presents the first V2SOM prototype, with quasi-static and dynamic experimental evaluations.


2020 ◽  
Vol 10 (11) ◽  
pp. 3692 ◽  
Author(s):  
David Sepulveda-Lopez ◽  
Jacobo Antona-Makoshi ◽  
Ignacio Rubio ◽  
Marcos Rodríguez-Millán

This study evaluates various safety aspects of standardized impacts that cyclists may suffer while wearing a bicycle helmet, by combining a partially validated finite element model of the cranio-cervical region and a newly developed commercial bicycle helmet model. Under EN 1078 standardized impact conditions, the results of simulated impact tests show that the helmet can absorb 40% to 50% of the total impact energy at impact velocities above 4 m/s. Further, based on a relationship between the head injury criterion and the risk of injury from field data, the results of the simulations suggest that minor injuries may occur at impact velocities of 10 km/h, serious injuries at 15 km/h, and severe injuries at 20 km/h. Fatal injuries will likely occur at impact velocities of 30 km/h and higher.


Sign in / Sign up

Export Citation Format

Share Document