voltage regulator modules
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Mini Puthenpurakkal Varghese ◽  
Ashwathnarayana Manjunatha ◽  
Thazhathu Veedu Snehaprabha

<p>Modern microprocessors in high-power applications require a low input voltage and a high input current, necessitating the use of multiphase buck converters. As per microprocessor computing complexity, the power requirements of the switching converter will also be more important and will be increasing as per load demand. Previous studies introduced some methods to achieve the advantages associated with multiphase regulators. This paper presents an effective closed closed-loop control scheme for multiphase buck converters that reduces ripple and improves transient response. It is suitable for applications that require regulated output voltage with effectively reduced ripple. The analysis began with a simulation of the entire design using the OrCAD tool, followed by the construction of a hardware setup. Experiments on a 200 Khz, 9 V, 12 A, 2-phase buck voltage regulator were conducted and the proposed experiment found to be useful.</p>


2021 ◽  
Vol 10 (4) ◽  
pp. 1856-1863
Author(s):  
Mini P. Varghese ◽  
A. Manjunatha ◽  
T. V. Snehaprabha

Voltage regulator modules (VRM) need to have low output voltage ripple and tight efficiency to power advanced microprocessors. This paper explains a phase shedding technique to enhance efficiency and its impact on output voltage ripple. In this study, analysis was done on a 4-phase buck converter which is having an input voltage of 45-65 V and delivers an output of 9 V, 12A with a switching frequency of 200Khz. The phase shedding control scheme is suitable for applications such as power sources for programmable logic controllers, which is a part of SCADA systems, which requires a low voltage and high current power supply. Working of a multiphase buck converter with phase shedding is modelled and verified using Matlab/Simulink software. The simulation results show the effect of the phase shedding technique on efficiency in varying load conditions and the effect of an increase of the voltage ripple at the output.


2021 ◽  
Vol 36 (3) ◽  
pp. 2481-2487
Author(s):  
Zhaoyang Zhao ◽  
Dao Zhou ◽  
Pooya Davari ◽  
Junlong Fang ◽  
Frede Blaabjerg

Sign in / Sign up

Export Citation Format

Share Document