tunnel entrance
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 54)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Rongshan Cheng ◽  
Huizhi Wang ◽  
Ziang Jiang ◽  
Dimitris Dimitriou ◽  
Cheng-Kung Cheng ◽  
...  

Purpose: The aims of this study were to 1) investigate the effects of femoral drilling angle in coronal and sagittal planes on the stress and strain distribution around the femoral and tibial tunnel entrance and the stress distribution on the graft, following anterior cruciate ligament reconstruction (ACLR), 2) identify the optimal femoral drilling angle to reduce the risk of the tunnel enlargement and graft failure.Methods: A validated three-dimensional (3D) finite element model of a healthy right cadaveric knee was used to simulate an anatomic ACLR with the anteromedial (AM) portal technique. Combined loading of 103.0 N anterior tibial load, 7.5 Nm internal rotation moment, and 6.9 Nm valgus moment during normal human walking at joint flexion of 20° was applied to the ACLR knee models using different tunnel angles (30°/45°/60° and 45°/60° in the coronal and sagittal planes, respectively). The distribution of von Mises stress and strain around the tunnel entrances and the graft was calculated and compared among the different finite element ACLR models with varying femoral drilling angles.Results: With an increasing coronal obliquity drilling angle (30° to 60°), the peak stress and maximum strain on the femoral and tibial tunnel decreased from 30° to 45° and increased from 45° to 60°, respectively. With an increasing sagittal obliquity drilling angle (45° to 60°), the peak stress and the maximum strain on the bone tunnels increased. The lowest peak stress and maximum strain at the ACL tunnels were observed at 45° coronal/45° sagittal drilling angle (7.5 MPa and 7,568.3 μ-strain at the femoral tunnel entrance, and 4.0 MPa and 4,128.7 μ-strain at the tibial tunnel entrance). The lowest peak stress on the ACL graft occurred at 45° coronal/45° sagittal (27.8 MPa) drilling angle.Conclusions: The femoral tunnel drilling angle could affect both the stress and strain distribution on the femoral tunnel, tibial tunnel, and graft. A femoral tunnel drilling angle of 45° coronal/ 45° sagittal demonstrated the lowest peak stress, maximum strain on the femoral and tibial tunnel entrance, and the lowest peak stress on the ACL graft.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zeming Wang ◽  
Jianhua Yang ◽  
Ting Zhang ◽  
Chi Yao ◽  
Xiaobo Zhang ◽  
...  

Tunnel blast-induced vibration probably causes damage to the rock mass surrounding the tunnel surface and also to the rock mass of the slope at the tunnel entrance. It is important to simultaneously monitor the vibration on the tunnel surface and on the tunnel entrance slope face, especially when the blasting work face is close to tunnel entrance. During blasting excavation of the traffic tunnel at Baihetan hydropower station, vibration monitors were installed both on the tunnel surface and on the tunnel entrance slope face. Based on the monitoring data, a comparative study is conducted on the peak particle velocity (PPV) and frequency characteristics of the vibrations at these two locations. A three-dimensional FEM simulation of the tunnel blast is then performed to verify the field test results. The field monitoring and the numerical simulation show that there is significant difference between the vibration on the tunnel surface and that on the tunnel entrance slope face. The vibration on the tunnel surface has greater PPV and faster attenuation, while the tunnel entrance slope face has higher frequency and faster reduction rate in the center frequency. These differences are attributed to the different wave types and wave propagation paths. The tunnel surface is mainly surface waves transmitted through the damaged rock mass around the tunnel profile, while the tunnel entrance slope face originates mainly from the body waves transmitted via the undamaged rock mass inside the mountain. The comparisons of the monitored vibrations with the velocity limits specified in the Chinese standard show that the most dangerous vibration that may exceed the limit occurs on the tunnel surface. Therefore, the maximum charge weight used in the tunnel blast is determined by the vibration on the tunnel surface. Under different control standards, the allowable maximum charge weight per delay is further discussed.


Author(s):  
Haijuan Wang ◽  
Haibo Jiang ◽  
Fengchun Yang

In order to explore the temporal and spatial evolution of the mechanical characteristics of hydraulic tunnels with high ground temperature during construction, a numerical simulation study was performed on the construction process of the tunnel using finite element calculation software, and the results were compared with the field monitoring results. The results showed that the displacements of the top arch and waist arch of the tunnel increased with time, and the top arch of the tunnel entrance was greatly affected by the excavation. The plastic zone was larger in the top arch and the bottom arch of surrounding rock, and smaller in the waist arch. The plastic strain of the top arch and bottom arch of surrounding rock was smaller, while the plastic strain of the waist arch was larger. The parallel excavation and lining construction have less impact on the surrounding rock.


2021 ◽  
Vol 3 (29) ◽  
pp. 39-57
Author(s):  
Massoud Danishmal ◽  
◽  
Zainullah Serat ◽  

Traffic safety is a major concern worldwide. Road accidents are the ninth leading cause of death in the world. Tunnel accidents are less common than road accidents. However, the severity of the accidents is more severe. One of the key factors in preventing accidents in road tunnels is proper lighting system. Failure to pay attention to this issue causes the phenomenon of black hole when approaching the tunnel, visual mismatch inside the tunnel and the phenomenon of glowing hole when leaving the tunnel. The creation of these factors has increased the risk potential at the entrance and exit of the tunnel up to 4 times the middle area of the tunnel. At the entrance to the tunnel, the reflection of sunlight from the surroundings and the lack of sufficient light usually cause some vision problems. It may lead to drivers' eyes not adapting to changing the brightness level at the tunnel entrance, thus increasing the risk of road accidents in this area. The aim of this study was to evaluate the lighting safety in very long road tunnels based on the visual adaptation of drivers in the tunnels. In this paper, first, generalities about tunnel safety are stated and using the CIE88-2004 standard, the required luminosity in the threshold, transition, interior and exit areas of the tunnel is designed. Finally, solutions are proposed to increase the safety of tunnels.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jianqiang Zhang ◽  
Jiyao Ma ◽  
Juan Huang ◽  
Guoliang Wang ◽  
Yilong Huang ◽  
...  

Abstract Background At present, the most effective and mature treatment after ACL injury and tear is ACL reconstruction, but the rehabilitation process after ACL reconstruction that is very long, so it is very important to find early MRI positive findings of knee instability. Methods We retrospectively collected the clinical and imaging data of 70 patients who underwent ACL reconstruction from January 2016 to December 2019; Based on clinical criteria, the patients were divided into a stable group (n = 57) and an unstable group (n = 13); We measured the MRI imaging evaluation indexes, including the position of the bone tunnel, graft status, and the anatomical factors; Statistical methods were used to compare the differences of imaging evaluation indexes between the two groups; The prediction equation was constructed and ROC curve was used to compare the prediction efficiency of independent prediction factors and prediction equation. Results There were significant differences in the abnormal position of tibial tunnel entrance, percentage of the position of tibial tunnel entrance, position of tibial tunnel exit, lateral tibial posterior slope (LTPS), width of intercondylar notch between stable knee joint group and unstable knee joint group after ACL reconstruction (P < 0.05); The position of tibial tunnel exits and the lateral tibial posterior slope (LTPS) and the sagittal obliquity of the graft were independent predictors among surgical factors and self-anatomical factors (P < 0.05); The prediction equation of postoperative knee stability was established: Logit(P) = -1.067–0.231*position of tibial tunnel exit + 0.509*lateral tibial posterior slope (LTPS)-2.105*sagittal obliquity of the graft; The prediction equation predicted that the AUC of knee instability was 0.915, the sensitivity was 84.6%, and the specificity was 91.2%. Conclusions We found that abnormalities of the position of the exit of the bone tunnel, lateral tibial posterior slope (LTPS) and sagittal obliquity of the graft were the early MRI positive findings of knee instability after ACL reconstruction. It is helpful for clinicians to predict the stability of knee joint after ACL reconstruction.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Shijian He ◽  
Xinsha Fu ◽  
Zhihua Tan ◽  
Jijing Wang ◽  
Ting Ge

The precise calibration of acceleration and deceleration parameters is crucial for improving the accuracy of operating speed prediction and analysis tools at tunnel entrances. Therefore, acceleration and deceleration data of passenger car captured from 20 drivers at 30 tunnel entrances were collected from 200 m outside to 200 m inside the tunnel portal and averaged across four study zones. The results show that, first, the distribution of deceleration rates based on speed differs from that of acceleration rates based on speed in all zones. Second, significant differences in the probability density distribution of deceleration were found between each zone ( p < 0.001 ), but differences in acceleration could not be found between any zones ( p > 0.05 ). Third, the feature values (breakpoints) of the acceleration/deceleration cumulative frequency curves were located near the 95th percentile, differing from the traditional 85th percentile found with the extant model. The feature values of acceleration in the four zones coincided at 0.5 m/s2 and those of deceleration were 0.93, 0.85, 0.70, and 0.47 m/s2 under zones 1–4, respectively. This study provides accurate feature values of acceleration and deceleration for modelling an updated tunnel entrance operating speed prediction model.


2021 ◽  
Vol 11 (15) ◽  
pp. 6753
Author(s):  
Fu Wang ◽  
Dengjun Gu ◽  
Yuanyuan Li ◽  
Wei Liu ◽  
Guoyun Wang

Because the inside of a road tunnel is a closed strip, the driving environment changes suddenly at the tunnel entrance and exit, which is why accidents occur more frequently in tunnels than elsewhere. Based on visual psychology, reverse-perspective-illusion deceleration lines (RPIDLs) and visual-intervention deceleration devices (VIDDs) were designed to control vehicle speeds near the entrance and in the middle of a tunnel, respectively. Then, to assess the speed-controlling performance of the RPIDLs and VIDDs for vehicles in a long downhill tunnel, laser velocimeters were used to measure the vehicle speeds at different observation points in the tunnel before and after implementing the RPIDLs and VIDDs. The results show that the RPIDLs and VIDDs decreased the average vehicle speed and controlled its dispersion effectively. The 60 m RPIDLs improved the traffic safety in the tunnel without lessening the passing ability therein. The slash-line VIDD had no obvious effect on the maximum vehicle speeds in the middle of the tunnel. Both the 90° fold-line VIDD and the four-yellow–four-white VIDD decreased the maximum vehicle speeds significantly. The 60 m RPIDLs and the 90° fold-line VIDD gave the best deceleration effect on vehicles near the entrance and in the middle of the tunnel, respectively, and controlled the average speed and its dispersion effectively.


Sign in / Sign up

Export Citation Format

Share Document