Posterior Tibial Loading Results in Significant Increase of Peak Contact Pressure in the Patellofemoral Joint During Anterior Cruciate Ligament Reconstruction: A Cadaveric Study

2021 ◽  
Vol 49 (5) ◽  
pp. 1286-1295
Author(s):  
Wenhan Huang ◽  
Michael Tim-Yun Ong ◽  
Gene Chi-Wai Man ◽  
Yang Liu ◽  
Lawrence Chun-Man Lau ◽  
...  

Background: Inappropriate posterior tibial loading and initial graft tension during anterior cruciate ligament (ACL) reconstruction may cause altered patellofemoral joint (PFJ) contact mechanics, potentially resulting in pain and joint degeneration. Hypothesis: PFJ contact pressure would increase with the increases in posterior tibial loading and graft tension during ACL reconstruction. Study Design: Controlled laboratory study. Methods: Nine fresh-frozen, nonpaired human cadaveric knees were tested in a customized jig from 0° to 120° of knee flexion. First, the knee was tested in the ACL-intact state. Second, reconstruction of the ACLs using different posterior tibial loadings and graft tensions were performed. The posterior tibial loading was evaluated at 2 levels: 33.5 and 67 N. Graft tension was assessed at 3 levels: low tension (20 N), medium tension (60 N), and high tension (80 N). Maximum values of peak contact pressure in the medial and lateral patellar facets were compared between ACL-intact and ACL-reconstructed knees. The PFJ kinematics between ACL-intact knees and ACL-reconstructed knees were compared during knee flexion at 30°, 60°, 90°, and 120°. Results: Reconstruction of ACLs with both low and high posterior tibial loading resulted in significant increases of peak contact pressure in the medial (range of differences, 0.46-0.92 MPa; P < .05) and lateral (range of differences, 0.51-0.83 MPa; P < .05) PFJ compared with the ACL-intact condition. However, no significant differences in PFJ kinematics were identified between ACL-reconstructed knees and ACL-intact knees. In ACL-reconstructed knees, it was found that a high posterior tibial loading resulted in high peak contact pressure on the medial patellar side (range of differences, 0.37-0.46 MPa; P < .05). No significant difference in peak contact pressure was observed among the differing graft tensions. Conclusion: In this cadaveric model, ACL reconstruction resulted in significant increases of peak contact pressure in the PFJ facet when compared with the ACL-intact condition. A high posterior tibial loading can lead to high medial PFJ peak contact pressure. Graft tension was found to not significantly affect PFJ contact pressure during ACL reconstruction. Clinical Relevance: An excessive posterior tibial loading during ACL reconstruction resulted in increased PFJ contact pressures at time of surgery. These data suggest that a low posterior tibial loading might be preferred during ACL reconstruction surgery to reduce the PFJ contact pressure close to that of the ACL-intact condition.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ling Zhang ◽  
Shuai Fan ◽  
Jiling Ye ◽  
Xin Jiang ◽  
Bin Cai

Abstract Background Knowledge of tibiofemoral and patellofemoral joint kinematics is important for understanding gender-related dimorphism in developing knee arthrofibrosis and advancement of related treatments. The objective of our study was to investigate gender differences existing in tibiofemoral kinematics and patellar tracking in patients with arthrofibrosis after anterior cruciate ligament (ACL) reconstruction during weight-bearing knee flexion. Methods The tibiofemoral and patellofemoral joint kinematics were measured in 30 patients (15 male and 15 female) with arthrofibrosis after ACL reconstruction during a lunge task, using computed tomography and dual fluoroscopic imaging system. These data were analyzed for gender differences. Results The range of tibial rotation, patellar inferior shift, tilt, and flexion were significantly decreased in the affected knee compared to the contralateral knee from 15° to 75° of knee flexion (P ≤ 0.04). Statistically significant difference was detected for medial tibial translation between male and female patients at 60° (P = 0.04) and 75° of knee flexion (P = 0.02). The tibial rotation was significantly decreased at 60° (P = 0.03) and 75° of knee flexion (P < 0.01) in females. The inferior patellar shift in females was significantly lower than that in males at 15° (P = 0.04) and 30° of knee flexion (P = 0.01). The patellar tilt was significantly lower at 60° (P = 0.02) and 75° of knee flexion (P < 0.01) in females compared to males. Conclusions The results indicated a significant effect of gender on knee kinematics in patients with arthrofibrosis after ACL reconstruction during weight-bearing knee flexion. These gender differences in tibiofemoral kinematics and patellar tracking may warrant further investigations to determine implications for making gender-specific surgical treatments and rehabilitation programs.


2019 ◽  
Vol 47 (13) ◽  
pp. 3203-3211
Author(s):  
Alberto Grassi ◽  
Stefano Di Paolo ◽  
Gian Andrea Lucidi ◽  
Luca Macchiarola ◽  
Federico Raggi ◽  
...  

Background: Limited in vivo kinematic information exists on the effect of clinical-based partial medial and lateral meniscectomy in the context of anterior cruciate ligament (ACL) reconstruction. Hypothesis: In patients with ACL deficiency, partial medial meniscus removal increases the anteroposterior (AP) laxity with compared with those with intact menisci, while partial lateral meniscus removal increases dynamic laxity. In addition, greater postoperative laxity would be identified in patients with partial medial meniscectomy. Study design: Cross-sectional study; Level of evidence, 3. Methods: A total of 164 patients with ACL tears were included in the present study and divided into 4 groups according to the meniscus treatment they underwent: patients with partial lateral meniscectomy (LM group), patients with partial medial meniscectomy (MM group), patients with partial medial and lateral meniscectomy (MLM group), and patients with intact menisci who did not undergo any meniscus treatment (IM group). A further division in 2 new homogeneous groups was made based on the surgical technique: 46 had an isolated single-bundle anatomic ACL reconstruction (ACL group), while 13 underwent a combined single-bundle anatomic ACL reconstruction and partial medial meniscectomy (MM-ACL group). Standard clinical laxities (AP translation at 30° of knee flexion, AP translation at 90° of knee flexion) and pivot-shift (PS) tests were quantified before and after surgery by means of a surgical navigation system dedicated to kinematic assessment. The PS test was quantified through 3 different parameters: the anterior displacement of the lateral tibial compartment (lateral AP); the posterior acceleration of the lateral AP during tibial reduction (posterior acceleration); and finally, the area included by the lateral AP translation with respect to the flexion/extension angle (area). Results: In the ACL-deficient status, the MM group showed a significantly greater tibial translation compared with the IM group ( P < .0001 for AP displacement at 30° [AP30] and 90° [AP90] of flexion) and the LM group ( P = .002 for AP30 and P < .0001 for AP90). In the PS test, the area of LM group was significantly larger (57%; P = .0175) than the one of the IM group. After ACL reconstruction, AP translation at 30° was restored, while the AP90 remained significantly greater at 1.3 mm ( P = .0262) in the MM-ACL group compared with those with intact menisci. Conclusion: Before ACL reconstruction, partial medial meniscectomy increased AP laxity at 30° and 90° and lateral meniscectomy increased dynamic PS laxity with respect to intact menisci. Anatomic single-bundle ACL reconstruction decreased laxities, but a residual anterior translation of 1.3 mm at 90° remained in patients with partial medial meniscectomy, with respect to those with intact menisci.


2019 ◽  
Vol 33 (07) ◽  
pp. 722-727 ◽  
Author(s):  
Enes Büyükafşar ◽  
Selda Başar ◽  
Ulunay Kanatli

AbstractAfter the anterior cruciate ligament (ACL) reconstruction, a loss of proprioception is observed and it can continue years after the operation. The aim of this study is to evaluate proprioception in standing position at different knee flexion angles in patients who underwent ACL reconstruction with tibialis anterior tendon allograft. The study included 34 patients who underwent ACL reconstruction with tibialis anterior tendon allograft and 34 healthy individuals. Proprioception was evaluated in standing position at 15°, 30°, 60° flexion angles with the active joint position sense (AJPS) method using digital inclinometer. Proprioception deviation angle was found to be higher in the operated leg at 30° and 60° flexion angles in the patient group compared with the other leg (p < 0.05), the biggest proprioception difference was between the 15° and 60° flexion angles in both the patient and the control group (p < 0.05) that the difference between 15° and 30° flexion angles is lowest (p < 0.05), and that these differences are higher in the operated leg of the patient group compared with the other leg of the patient group and to the dominant leg of the control group (p < 0.05). As approximately 4 years after ACL reconstruction with tibialis anterior tendon allograft, loss of proprioception at 60° knee flexion continued, ACL injury related to loss of proprioception may occur at angles higher than 30° flexion. Thus, patients may be provided with proprioception-enhancing rehabilitation in the long term, particularly, at flexion angles above medium levels.


2019 ◽  
Vol 7 (11) ◽  
pp. 232596711987937 ◽  
Author(s):  
Richard J. Napier ◽  
Enrique Garcia ◽  
Brian M. Devitt ◽  
Julian A. Feller ◽  
Kate E. Webster

Background: Increased posterior tibial slope has been identified as a possible risk factor for injury to the anterior cruciate ligament (ACL) and has also been shown to be associated with ACL reconstruction graft failure. It is currently unknown whether increased posterior tibial slope is an additional risk factor for further injury in the context of revision ACL reconstruction. Purpose: To determine the relationship between posterior tibial slope and further ACL injury in patients who have already undergone revision ACL reconstruction. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 330 eligible patients who had undergone revision ACL reconstruction between January 2007 and December 2015 were identified from a clinical database. The slope of the medial and lateral tibial plateaus was measured on perioperative lateral radiographs by 2 fellowship-trained orthopaedic surgeons using a digital software application. The number of subsequent ACL injuries (graft rupture or a contralateral injury to the native ACL) was determined at a minimum follow-up of 2 years (range, 2-8 years). Tibial slope measurements were compared between patients who sustained further ACL injury to either knee and those who did not. Results: There were 50 patients who sustained a third ACL injury: 24 of these injuries were to the knee that underwent revision ACL reconstruction, and 26 were to the contralateral knee. Medial and lateral slope values were significantly greater for the third-injury group compared with the no–third injury group (medial, 7.5° vs 6.3° [ P = .01]; lateral, 13.6° vs 11.9° [ P = .001]). Conclusion: Increased posterior tibial slope, as measured from lateral knee radiographs, was associated with increased risk of graft rupture and contralateral ACL injury after revision ACL reconstruction. This is consistent with the concept that increased posterior slope, particularly of the lateral tibial plateau, is an important risk factor for recurrent ACL injury.


2018 ◽  
Vol 32 (05) ◽  
pp. 441-447
Author(s):  
Richard Ma ◽  
Mark Stasiak ◽  
Xiang-Hua Deng ◽  
Scott Rodeo

AbstractThe purpose of this study is to establish a small animal anterior cruciate ligament (ACL) reconstruction research model where ACL graft force can be varied to create different graft force patterns with controlled knee motion. Cadaveric (n = 10) and in vivo (n = 10) rat knees underwent ACL resection followed by reconstruction using a soft tissue autograft. Five cadaveric and five in vivo knees received a nonisometric, high-force femoral graft tunnel position. Five cadaveric and five in vivo knees received a more isometric, low-force graft tunnel position. ACL graft force (N) was then recorded as the knee was ranged from extension to 90 degrees using a custom knee flexion device. Our results demonstrate that distinct ACL graft force patterns were generated for the high-force and low-force femoral graft tunnels. For high-force ACL grafts, ACL graft forces increased as the knee was flexed both in cadaveric and in vivo knees. At 90 degrees of knee flexion, high-force ACL grafts had significantly greater mean graft force when compared with baseline (cadaver: 7.76 ± 0.54 N at 90 degrees vs. 4.94 ± 0.14 N at 0 degree, p = 0.004; in vivo: 7.29 ± 0.42 N at 90 degrees vs. 4.74 ± 0.13 N at 0 degree, p = 0.007). In contrast, the graft forces for low-force ACL grafts did not change with knee flexion (cadaver: 4.94 ± 0.11 N at 90 degrees vs. 4.72 ± 0.14 N at 0 degree, p = 0.41; in vivo: 4.78 ± 0.26 N at 90 degrees vs. 4.77 ± 0.06 N at 0 degree, p = 1). Compared with nonisometric ACL grafts, the graft force for grafts placed in an isometric position had significantly lower ACL graft forces at 15, 30, 45, 60, 70, and 90 degrees in both cadaveric and in vivo knees. In conclusion, we have developed a novel ACL reconstruction model that can reproducibly produce two ACL graft force patterns. This model would permit further research on how ACL graft forces may affect subsequent graft healing, maturation, and function.


2021 ◽  
Vol 10 (8) ◽  
pp. 1625
Author(s):  
Jae Gyoon Kim ◽  
Kyoung Tak Kang ◽  
Joon Ho Wang

The purpose of our study was to analyze the graft contact stress at the tunnel after transtibial single-bundle (SB) and transportal double-bundle (DB) anterior cruciate ligament (ACL) reconstruction. After transtibial SB (20 cases) and transportal DB (29 cases) ACL reconstruction, the three-dimensional image of each patient made by postoperative computed tomography was adjusted to the validation model of a normal knee and simulated SB and DB ACL reconstructions were created based on the average tunnel position and direction of each group. We also measured graft and contact stresses at the tunnel after a 134 N anterior load from 0° to 90° flexion. The graft and contact stresses became the greatest at 30° and 0° flexion, respectively. The total graft and contact stresses after DB ACL reconstruction were greater than those after SB ACL reconstruction from 0° to 30° and 0° to 90° knee flexion, respectively. However, the graft and contact stresses of each graft after DB ACL reconstruction were less than those after SB ACL reconstruction. In conclusion, the total graft and total contact stresses after DB ACL reconstruction are higher than those after SB ACL reconstruction from 0° to 30° and 0° to 90° knee flexion, respectively. However, the stresses of each graft after DB ACL reconstruction are about half of those after SB ACL reconstruction.


2019 ◽  
Vol 47 (9) ◽  
pp. 2093-2101 ◽  
Author(s):  
Hiroko Ueki ◽  
Hiroki Katagiri ◽  
Koji Otabe ◽  
Yusuke Nakagawa ◽  
Toshiyuki Ohara ◽  
...  

Background: Several types of anterolateral structure (ALS) augmentation procedures in anterior cruciate ligament (ACL) reconstruction have been reported. However, information is limited regarding the effect of additional ALS augmentation on rotatory stability in a clinical setting. Purpose/Hypothesis: This study aimed to investigate the contribution of additional ALS augmentation in ACL reconstruction in cases with a high risk of residual pivot shift. The 2 hypotheses were as follows. First, additional ALS augmentation would improve rotatory stability as compared with solely reconstructing the ACL. Second, graft tension changes would be different between the ACL and ALS during knee range of motion and against anterior or rotatory loads. Study Design: Controlled laboratory study. Methods: Fifteen patients who met at least 1 of the following criteria were included: (1) revision ACL reconstruction, (2) preoperative high-grade pivot shift, or (3) hyperextended knee. The pivot-shift test was performed preoperatively and during surgery after ACL reconstruction and after additional ALS augmentation with acceleration measurements from a triaxial accelerometer. The tension changes of the ACL and ALS grafts were also measured during knee range of motion and against manual maximum anterior tibial translation, internal rotation, and external rotation. Results: After ACL reconstruction, the pivot-shift acceleration was still greater than that of the uninjured knee. However, additional ALS augmentation further reduced acceleration when compared with ACL reconstruction alone in both primary and revision cases ( P < .05 vs preoperative, P < .05 vs ACL). During knee flexion-extension, the tension of the ACL increased as the knee was extended, whereas that of the ALS did not change. Graft tension of the ACL and ALS became higher with internal rotation and lower with external rotation as compared with the neutral position. Tension of the ACL was significantly increased against anterior tibial translational loads, whereas that of the ALS was not. Conclusion: Additional ALS augmentation further improved the rotatory stability during ACL reconstruction in patients with a high risk of residual pivot shift at the time of surgery. Significant differences in graft tension changes were also observed between the ACL and ALS against different loads. Additional ALS augmentation may be considered to eliminate the pivot shift in patients with a high risk of residual pivot shift.


2020 ◽  
Vol 8 (8) ◽  
pp. 232596712094632
Author(s):  
Lachlan M. Batty ◽  
Julian A. Feller ◽  
Iswadi Damasena ◽  
Gerrit Behrens ◽  
Brian M. Devitt ◽  
...  

Background: Deficits in neuromuscular control are common after anterior cruciate ligament (ACL) reconstruction and may be associated with further knee injury. The knee valgus angle during a single-leg squat (SLS) is one measure of neuromuscular performance. Purpose: To determine whether the knee valgus angle during SLS changes between 6 and 12 months after ACL reconstruction and to assess how the operative knee valgus angle compares with that of the contralateral side. Study Design: Case series; Level of evidence, 4. Methods: A cohort of 100 patients with uninjured contralateral knees were assessed at 6 and 12 months after primary hamstring autograft ACL reconstruction. Participants performed the SLS on each leg, and the knee valgus angle was measured via frame-by-frame video analysis at 30° of flexion and at each patient’s maximum knee flexion angle. Results: For the operative limb at 30° of flexion, a small but statistically significant reduction was noted in the valgus angle between 6 and 12 months (5.46° vs 4.44°; P = .002; effect size = 0.24). At 6 months, a slightly higher valgus angle was seen in the operative limb compared with the nonoperative limb (5.46° vs 4.29°; P = .008; effect size = 0.27). At maximum flexion, no difference was seen between limbs in the valgus angle at either 6 or 12 months, and no change was seen in the operative limb between 6 and 12 months. At 6 months and 30° of knee flexion, 13 patients had a valgus angle greater than 10°. This group also had a higher mean valgus angle in the contralateral limb compared with the contralateral limb in the other 87 patients (8.5° vs 3.65°; P < .001). Conclusion: During a controlled SLS, the knee valgus angle remained essentially constant, and minimal limb asymmetries were present over the 6- to 12-month postoperative period, a time when athletes typically increase their activity levels. Whether changes or asymmetries will be seen with more dynamically challenging tasks remains to be determined. When present, high valgus angles were commonly bilateral.


2015 ◽  
Vol 119 (3) ◽  
pp. 223-231 ◽  
Author(s):  
Chandramouli Krishnan ◽  
Paul Theuerkauf

Quadriceps strength and activation deficits after anterior cruciate ligament (ACL) injury or surgery are typically evaluated at joint positions that are biomechanically advantageous to the quadriceps muscle. However, the effect of knee joint position and the associated changes in muscle length on strength and activation is currently unknown in this population. Here, we examined the effect of knee angle on quadriceps strength, activation, and electrically evoked torque in individuals with ACL reconstruction. Furthermore, we evaluated whether knee angle mediated the relationship between quadriceps weakness and functional performance after ACL reconstruction. Knee strength and activation were tested bilaterally at 90° and 45° of knee flexion in 11 subjects with ACL reconstruction using an interpolated triplet technique. The magnitude of electrically evoked torque at rest was used to quantify peripheral muscle contractile property changes, and the single-leg hop for distance test was used to evaluate functional performance. The results indicated that although quadriceps strength deficits were similar between knee angles, voluntary activation deficits were significantly higher in the reconstructed leg at 45° of knee flexion. On the contrary, the side-to-side evoked torque at rest ratio [i.e., (reconstructed/nonreconstructed) × 100] was significantly lower at 90° than at 45° of knee flexion. The association between quadriceps strength and functional performance was stronger at 45° of knee flexion. The results provide novel evidence that quadriceps activation is selectively affected at 45° of knee flexion and emphasize the importance of assessing quadriceps strength and activation at this position when feasible because it better captures activation deficits.


Sign in / Sign up

Export Citation Format

Share Document