dissipative part
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Youka Kaku ◽  
Keiju Murata ◽  
Jun Tsujimura

Abstract We propose a way to observe the photon ring of the asymptotically anti-de Sitter black hole dual to a superconductor on the two-dimensional sphere. We consider the electric current of the superconductor under the localized time-periodic external electromagnetic field. On the gravity side, the bulk Maxwell field is sent from the AdS boundary and then diffracted by the black hole. We construct the image of the black hole from the asymptotic data of the bulk Maxwell field that corresponds to the electric current on the field theory side. We decompose the electric current into the dissipative and non-dissipative parts and take the dissipative part for the imaging of the black hole. We investigate the effect of the charged scalar condensate on the image. We obtain the bulk images that indicate the discontinuous change of the size of the photon ring.


2010 ◽  
Vol 26 (2) ◽  
pp. 219-228
Author(s):  
K.-C. Chen

AbstractThis paper aims to construct the bracket formalism of mixture continua by using the method of Lagrangian- to-Eulerian (LE) transformation. The LE approach first builds up the transformation relations between the Eulerian state variables and the Lagrangian canonical variables, and then transforms the bracket in Lagrangian form to the bracket in Eulerian form. For the conservative part of the bracket formalism, this study systematically generates the noncanonical Poisson brackets of a two-component mixture. For the dissipative part, we deduce the Eulerian-variable-based dissipative brackets for viscous and diffusive mechanisms from their Lagrangian-variable-based counterparts. Finally, the evolution equations of a micromorphic fluid, which can be treated as a multi-component mixture, are derived by constructing its Poisson and dissipative brackets.


2004 ◽  
Vol 3 (2) ◽  
pp. 134
Author(s):  
R. L. Thompson ◽  
P. R. Souza Mendes

Non-Newtonian materials respond differently when submitted to shear or extension. A constitutive equation in which the stress is a function of both the rate of deformation and on the type of the flow is proposed and analyzed theoretically. It combines information obtained in shear, extension and rigid body motion in all regions of complex flow. The analysis has shown how to insert some elastic effects in a constitutive equation that depends only on the present time and position. One advantage of the model is that all the steady rheological functions in simple shear flow and in extensional flow are predicted exactly. Another important property that is included is the split of the extensional viscosity in two parts: one dissipative part that is related to the shear viscosity and an elastic part that is related to the first and second normal stress coefficients in shear. A discussion involving the dimensionless numbers that relate elastic and viscosity effects is also given.


2004 ◽  
Vol 3 (2) ◽  
Author(s):  
R. L. Thompson ◽  
P. R. Souza Mendes

Non-Newtonian materials respond differently when submitted to shear or extension. A constitutive equation in which the stress is a function of both the rate of deformation and on the type of the flow is proposed and analyzed theoretically. It combines information obtained in shear, extension and rigid body motion in all regions of complex flow. The analysis has shown how to insert some elastic effects in a constitutive equation that depends only on the present time and position. One advantage of the model is that all the steady rheological functions in simple shear flow and in extensional flow are predicted exactly. Another important property that is included is the split of the extensional viscosity in two parts: one dissipative part that is related to the shear viscosity and an elastic part that is related to the first and second normal stress coefficients in shear. A discussion involving the dimensionless numbers that relate elastic and viscosity effects is also given.


Author(s):  
M Wallin ◽  
M Ristinmaa ◽  
N S Ottosen

A kinematic hardening plasticity model valid for finite strains is presented. The model is based on the well-known multiplicative split of the deformation gradient into elastic and plastic parts. The basic ingredient in the formulation is the introduction of a locally defined configuration—a centre configuration—which is associated with a deformation gradient that is used to characterize the kinematic hardening behaviour. The non-dissipative quantities allowed in the model are found when the plastic and kinematic hardening evolution laws are split into two parts: a dissipative part, which is restricted by the dissipation inequality, and a non-dissipative part, which can be chosen without any thermodynamic considerations. To investigate the predictive capabilities of the proposed kinematic hardening formulation, necking of a bar is considered. Moreover, to show the influence of the non-dissipative quantities, the simple shear problem and torsion of a thin-walled cylinder are considered. The numerical examples reveal that the non-dissipative quantities can affect the response to a large extent and are consequently valuable and important ingredients in the formulation when representing real material behaviour.


Sign in / Sign up

Export Citation Format

Share Document