plasma membrane binding
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 4)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Clifton L Ricaña ◽  
Marc C. Johnson

During retroviral replication, unspliced viral genomic RNA (gRNA) must escape the nucleus for translation into viral proteins and packaging into virions. “Complex” retroviruses such as Human Immunodeficiency Virus (HIV) use cis-acting elements on the unspliced gRNA in conjunction with trans-acting viral proteins to facilitate this escape. “Simple” retroviruses such as Mason-Pfizer Monkey Virus (MPMV) and Murine Leukemia Virus (MLV) exclusively use cis-acting elements on the gRNA in conjunction with host nuclear export proteins for nuclear escape. Uniquely, the simple retrovirus Rous Sarcoma Virus (RSV) has a Gag structural protein that cycles through the nucleus prior to plasma membrane binding. This trafficking has been implicated in facilitating gRNA nuclear export and is thought to be a required mechanism. Previously described mutants that abolish nuclear cycling displayed enhanced plasma membrane binding, enhanced virion release, and a significant loss in genome incorporation resulting in loss of infectivity. Here, we describe a nuclear cycling deficient RSV Gag mutant that has similar plasma membrane binding and genome incorporation to WT virus and surprisingly, is replication competent albeit with a slower rate of spread compared to WT. This mutant suggests that RSV Gag nuclear cycling is not strictly required for RSV replication. Importance While mechanisms for retroviral Gag assembly at the plasma membrane are beginning to be characterized, characterization of intermediate trafficking locales remain elusive. This is in part due to the difficulty of tracking individual proteins from translation to plasma membrane binding. RSV Gag nuclear cycling is a unique phenotype that may provide comparative insight to viral trafficking evolution and may present a model intermediate to cis- and trans-acting mechanisms for gRNA export.


2021 ◽  
Author(s):  
Clifton L Ricana ◽  
Marc C Johnson

During retroviral replication, unspliced viral genomic RNA (gRNA) must escape the nucleus for translation into viral proteins and packaging into virions. 'Complex' retroviruses such as Human Immunodeficiency Virus (HIV) use cis-acting elements on the unspliced gRNA in conjunction with trans-acting viral proteins to facilitate this escape. 'Simple' retroviruses such as Mason-Pfizer Monkey Virus (MPMV) and Murine Leukemia Virus (MLV) exclusively use cis-acting elements on the gRNA in conjunction with host nuclear export proteins for nuclear escape. Uniquely, the simple retrovirus Rous Sarcoma Virus (RSV) has a Gag structural protein that cycles through the nucleus prior to plasma membrane binding. This trafficking has been implicated in facilitating gRNA nuclear export and is thought to be a required mechanism. Previously described mutants that abolish nuclear cycling displayed enhanced plasma membrane binding, enhanced virion release, and a significant loss in genome incorporation resulting in loss of infectivity. Here, we describe a nuclear cycling deficient RSV Gag mutant that has similar plasma membrane binding and genome incorporation to WT virus and surprisingly, is replication competent albeit with a slower rate of spread compared to WT. This mutant suggests that RSV Gag nuclear cycling is not strictly required for RSV replication.


2020 ◽  
Vol 295 (52) ◽  
pp. 17950-17972
Author(s):  
Birgit Meusser ◽  
Bettina Purfuerst ◽  
Friedrich C. Luft

The HIV-1 protein Gag assembles at the plasma membrane and drives virion budding, assisted by the cellular endosomal complex required for transport (ESCRT) proteins. Two ESCRT proteins, TSG101 and ALIX, bind to the Gag C-terminal p6 peptide. TSG101 binding is important for efficient HIV-1 release, but how ESCRTs contribute to the budding process and how their activity is coordinated with Gag assembly is poorly understood. Yeast, allowing genetic manipulation that is not easily available in human cells, has been used to characterize the cellular ESCRT function. Previous work reported Gag budding from yeast spheroplasts, but Gag release was ESCRT-independent. We developed a yeast model for ESCRT-dependent Gag release. We combined yeast genetics and Gag mutational analysis with Gag-ESCRT binding studies and the characterization of Gag-plasma membrane binding and Gag release. With our system, we identified a previously unknown interaction between ESCRT proteins and the Gag N-terminal protein region. Mutations in the Gag-plasma membrane–binding matrix domain that reduced Gag-ESCRT binding increased Gag-plasma membrane binding and Gag release. ESCRT knockout mutants showed that the release enhancement was an ESCRT-dependent effect. Similarly, matrix mutation enhanced Gag release from human HEK293 cells. Release enhancement partly depended on ALIX binding to p6, although binding site mutation did not impair WT Gag release. Accordingly, the relative affinity for matrix compared with p6 in GST-pulldown experiments was higher for ALIX than for TSG101. We suggest that a transient matrix-ESCRT interaction is replaced when Gag binds to the plasma membrane. This step may activate ESCRT proteins and thereby coordinate ESCRT function with virion assembly.


2015 ◽  
pp. MCB.00719-15 ◽  
Author(s):  
Kwang-jin Cho ◽  
Dharini van der Hoeven ◽  
Yong Zhou ◽  
Masashi Maekawa ◽  
Xiaoping Ma ◽  
...  

K-Ras must localize to the plasma membrane for biological activity, thus preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both K-Ras isoforms, K-Ras4A and K-Ras4B, from the plasma membrane to endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM-inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely supplementation with exogenous cholesterol restores K-Ras4A, but not K-Ras4B, nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly delivery of recombinant ASM, or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick Type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization.


2015 ◽  
Vol 290 (34) ◽  
pp. 21086-21100 ◽  
Author(s):  
Gurjot Kaur ◽  
Alexandra Pinggera ◽  
Nadine J. Ortner ◽  
Andreas Lieb ◽  
Martina J. Sinnegger-Brauns ◽  
...  

L-type voltage-gated Ca2+ channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I–IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca2+ levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca2+ channel function.


Traffic ◽  
2014 ◽  
Vol 16 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Annemarie Kralt ◽  
Marco Carretta ◽  
Muriel Mari ◽  
Fulvio Reggiori ◽  
Anton Steen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document