signal output
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 51)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 374 ◽  
pp. 131771
Author(s):  
Pei Jia ◽  
Jiayu Yang ◽  
Jinjie Hou ◽  
Kairong Yang ◽  
Taotao Zhe ◽  
...  

2021 ◽  
Author(s):  
Angika Basant ◽  
Michael Way

ABSTRACTPhosphotyrosine (pTyr) motifs in unstructured polypeptides orchestrate important cellular processes by engaging SH2-containing adaptors to nucleate complex signalling networks. The concept of phase separation has recently changed our appreciation of such multivalent networks, however, the role of pTyr motif positioning in their function remains to be explored. We have now explored this parameter in the assembly and operation of the signalling cascade driving actin-based motility and spread of Vaccinia virus. This network involves two pTyr motifs in the viral protein A36 that recruit the adaptors Nck and Grb2 upstream of N-WASP and Arp2/3-mediated actin polymerization. We generated synthetic networks on Vaccinia by manipulating pTyr motifs in A36 and the unrelated p14 from Orthoreovirus. In contrast to predictions, we find that only specific spatial arrangements of Grb2 and Nck binding sites result in robust N-WASP recruitment, Arp2/3 driven actin polymerization and viral spread. Our results suggest that the relative position of pTyr adaptor binding sites is optimised for signal output. This finding may explain why the relative positions of pTyr motifs are usually conserved in proteins from widely different species. It also has important implications for regulation of physiological networks, including those that undergo phase transitions.


Chemosensors ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 279
Author(s):  
Xiaotong Liang ◽  
Wenting Liang ◽  
Pengyue Jin ◽  
Hongtao Wang ◽  
Wanhua Wu ◽  
...  

The construction of chemical sensors that can distinguish molecular chirality has attracted increasing attention in recent years due to the significance of chiral organic molecules and the importance of detecting their absolute configuration and chiroptical purity. The supramolecular chirality sensing strategy has shown promising potential due to its advantages of high throughput, sensitivity, and fast chirality detection. This review focuses on chirality sensors based on macrocyclic compounds. Macrocyclic chirality sensors usually have inherent complexing ability towards certain chiral guests, which combined with the signal output components, could offer many unique advantages/properties compared to traditional chiral sensors. Chirality sensing based on macrocyclic sensors has shown rapid progress in recent years. This review summarizes recent advances in chirality sensing based on both achiral and chiral macrocyclic compounds, especially newly emerged macrocyclic molecules.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wei Shi ◽  
Zhiquan Wang ◽  
Lei Hou ◽  
Haiqing Wang ◽  
Meilin Wu ◽  
...  

A 2 × 2 terahertz photoconductive antenna (PCA) array detector with high efficiency synthesis characteristic that improves the signal-to-noise ratio (SNR) of the detected signals has been reported in this paper. By processing the substrate material through a special micromachining process, the current signal generated by the adjacent antenna elements as opposed to that generated by the antenna gap is eliminated. Experiments show that the amplitude of the current signal output by the PCA array detector is consistent with the amplitude of the synchronous superposition of the current signals output by antenna elements, and the synthesis efficiency of the device achieves 93.7%. At the same time, the antenna array detector has low current noise, and its highest SNR is 62 dB under the excitation of different light energy, which is related to the number of antenna array elements.


2021 ◽  
Author(s):  
Yan Zhang ◽  
Paige L Steppe ◽  
Maxwell W Kazman ◽  
Mark P Styczynski

Field-deployable diagnostics based on cell-free systems have advanced greatly, but on-site quantification of target analytes remains a challenge. Here we demonstrate that Escherichia coli lysate-based cell-free biosensors coupled to a personal glucose monitor (PGM) can enable on-site analyte quantification, with the potential for straightforward reconfigurability to diverse types of analytes. We show that analyte-responsive regulators of transcription and translation can modulate production of the reporter enzyme β-galactosidase, which in turn converts lactose into glucose for PGM quantification. Because glycolysis is active in the lysate and would readily deplete converted glucose, we decoupled enzyme production and glucose conversion to increase endpoint signal output. This lysate metabolism did, however, allow for one-pot removal of glucose present in complex samples (like human serum) without confounding target quantification. Taken together, we show that integrating lysate-based cell-free biosensors with PGMs enables accessible target detection and quantification at the point of need.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingqing Yin ◽  
Anni Pan ◽  
Binlong Chen ◽  
Zenghui Wang ◽  
Mingmei Tang ◽  
...  

AbstractNanoparticle internalisation is crucial for the precise delivery of drug/genes to its intracellular targets. Conventional quantification strategies can provide the overall profiling of nanoparticle biodistribution, but fail to unambiguously differentiate the intracellularly bioavailable particles from those in tumour intravascular and extracellular microenvironment. Herein, we develop a binary ratiometric nanoreporter (BiRN) that can specifically convert subtle pH variations involved in the endocytic events into digitised signal output, enabling the accurately quantifying of cellular internalisation without introducing extracellular contributions. Using BiRN technology, we find only 10.7–28.2% of accumulated nanoparticles are internalised into intracellular compartments with high heterogeneity within and between different tumour types. We demonstrate the therapeutic responses of nanomedicines are successfully predicted based on intracellular nanoparticle exposure rather than the overall accumulation in tumour mass. This nonlinear optical nanotechnology offers a valuable imaging tool to evaluate the tumour targeting of new nanomedicines and stratify patients for personalised cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document