limb asymmetry
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 62)

H-INDEX

11
(FIVE YEARS 3)

2022 ◽  
Vol 11 (2) ◽  
pp. 360
Author(s):  
Yanfei Guan ◽  
Shannon S. D. Bredin ◽  
Jack Taunton ◽  
Qinxian Jiang ◽  
Nana Wu ◽  
...  

Background: Inter-limb asymmetry in lower-limb functional performance has been associated with increased risk of sport injury; however, findings are not always consistent. Purpose: To conduct a systematic review on whether inter-limb asymmetry in lower-limb functional performance can predict sport injury. Methods: Four electronic databases (MEDLINE, EMBASE, Web of Science, and SportDiscus) were systematically searched for prospective cohort studies reporting the association between inter-limb asymmetry in lower-limb functional performance and sport injury. Results: A total of 28 prospective cohort studies were included in the analyses. Collectively, the findings were highly inconsistent, and a clear statement on the association between each asymmetry and sport injury was difficult. Conclusions: Highly inconsistent findings make it difficult to create clear recommendations on the relationship between the inter-limb asymmetry in lower-limb functional performance (power, muscle flexibility, and dynamic balance) and sport injury. The influence of potential factors (selection of tests/parameters, participant characteristics, definition of injury, and ways of calculating asymmetry) should be considered when using previous findings.


2022 ◽  
Vol 12 (2) ◽  
pp. 614
Author(s):  
Frydrýšek Karel ◽  
Čepica Daniel ◽  
Halo Tomáš ◽  
Skoupý Ondřej ◽  
Pleva Leopold ◽  
...  

Limb asymmetry can, and often does, cause various health problems. Blount bone staples (clips) are used to correct such uneven growth. This article analyzes the performance of a biomechanical staple during bone (tibia) growth arrest. The staples considered in this study were made of 1.4441 stainless steel, the model of tibia consisted of two materials representing corticalis and spongiosis. Hooke’s law was used for modeling materials’ behaviors for finite element analysis (FEA). The maxima of stress and total staple displacement were evaluated using the finite element method and verification of the results, along with the determination of the maximum loading (growing) force that the staples are capable of withstanding, was performed experimentally. The presented method can be used to determine the safety and usability of staples for bone growth arrest. According to our results, the design of Blount staples considered in this paper is safe and suitable for orthopedic treatment.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Raul Filipe Bartolomeu ◽  
Pedro Rodrigues ◽  
Catarina Costa Santos ◽  
Mário Jorge Costa ◽  
Tiago Manuel Barbosa

The different characteristics of the four swimming strokes affect the interplay between the four limbs, acting as a constraint to the force produced by each hand and foot. The purpose of this study was to analyze the symmetry of force production with a varying number of limbs in action and see its effect on velocity. Fifteen male swimmers performed four all-out bouts of 25-m swims in the four strokes in full-body stroke and segmental actions. A differential pressure system was used to measure the hands/feet propulsive force and a mechanical velocity meter was used to measure swimming velocity. Symmetry index was calculated based on the force values. All strokes and conditions presented contralateral limb asymmetries (ranging from 6.73% to 28% for the peak force and from 9.3% to 35.7% for the mean force). Backstroke was the most asymmetric stroke, followed-up by butterfly, front crawl, and breaststroke. Kicking conditions elicited the higher asymmetries compared with arm-pull conditions. No significant associations were found between asymmetries and velocity. The absence of such association suggests that, to a certain and unknown extent, swimming may benefit from contralateral limb asymmetry.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2226
Author(s):  
Rafał Szafraniec ◽  
Tadeusz Stefaniak ◽  
Dariusz Harmaciński ◽  
Michał Kuczyński

The study aimed to investigate the impact of a 12-week strength training program on force accuracy and steadiness changes in lower limbs in young healthy men. Twenty subjects with a dominant right lower limb were included. They performed a force matching task both pre and post strength training program. The ability to reproduce force was determined by calculating three errors: absolute error (AE), constant error (CE), and variable error (VE). After intervention AE and VE improved in both legs indicating higher improvement in the dominant leg (p = 0.032 for AE and p = 0.005 for VE). However, CE improved only in the dominant leg (p = 0.001). We conclude that strength training improved the accuracy and consistency of force in a force reproduction task. This improvement was more evident in the dominant lower limb. Most likely, the inter-limb asymmetry in changes of force application ability caused by strength training is due to the different mechanisms responsible for the control of voluntary movements in the dominant and non-dominant lower limb.


Author(s):  
Julian Bauer ◽  
Stefan Panzer ◽  
Thomas Muehlbauer

Abstract Background Handball is characterised by repetitive passing and shooting actions mainly performed with the throwing arm. This can lead to side differences (inter-limb asymmetry) in upper quarter mobility/stability between the throwing and non-throwing arm, which could even increase with advancing age (i.e., playing experience). However, side differences in upper quarter mobility/stability is associated with an increased musculoskeletal injury risk. Therefore, we assessed side differences in upper quarter mobility/stability in young handball players at different ages using a cross-sectional study design. Methods Upper Quarter Y Balance test performance of the throwing and non-throwing arm was assessed in 190 sub-elite young female and male handball players (13–18 years). Per arm, relative maximal reach distances (% arm length) for all three directions (i.e., medial, inferolateral, superolateral) and the composite score (CS) were calculated and used for an age × side analysis of variance. Additionally, partial eta-squared (ηp2) was calculated as an effect size measure. Results Irrespective of measure, statistically significant main effects of age (except for the composite score) and side but no statistically significant age × side interaction effects were detected. Further, limb asymmetry in the inferolateral reach direction was above the injury-related cut-off value (i.e., ≥ 7.75% arm length) in 13- and 14-year-olds but not in the older players. Conclusion The detection of limb asymmetry above the proposed injury-related cut-off value in younger players (13- and 14-year-olds) but not in older players (15- to 18-year-olds) may be indicative for an increased injury risk for the younger age group. Thus, prevention programs should be implemented in the handball training routine, especially for the younger ones.


2021 ◽  
Author(s):  
Kazuto Noro ◽  
Hiroaki Hirai ◽  
Hideya Okamoto ◽  
Daisuke Kogawa ◽  
Chikako Kamimukai ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Shayne Vial ◽  
Jodie Cochrane Wilkie ◽  
Mitchell Turner ◽  
Anthony J Blazevich

The ability to shift from walking and jogging to sprinting gaits, even when fatigued after prolonged effort, would have been as useful to our hunter-gatherer ancestors as it is in modern day sports. During prolonged jogging, joint moment and work are reduced in the distal (ankle) joint but increased at proximal (hip/knee) joints as fatigue progresses, and might be expected to occur in sprinting. Fatigue is also thought to increase inter-limb kinematic and force production asymmetries, which are speculated to influence injury risk. However, the effects of running-related fatigue on sprint running gait have been incompletely studied, so these hypotheses remain untested. We studied 3-D kinematics and ground reaction force production in dominant (DL) and non-dominant (NDL) legs during both non-fatigued and fatigue sprinting in habitual but uncoached running athletes. Contrary to the tested hypotheses, relative between-leg differences were greater in non-fatigued than fatigued sprinting. When not fatigued, DL produced greater propulsive impulse through both greater positive and negative work being performed at the ankle, whilst NDL produced more vertical impulse, possibly resulting from the greater hip flexion observed prior to the downwards acceleration of the foot towards the ground. Whilst few changes were detected in DL once fatigued, NDL shifted towards greater horizontal force production, largely resulting from an increase in plantarflexion (distal-joint) moments and power. After fatiguing running, therefore, inter-limb asymmetry was reduced and no distal-to-proximal shift in work/power was detected during sprinting. Speculatively, these adaptations may help to attenuate decreases in running speed whilst minimising injury risk.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1940
Author(s):  
Žiga Kozinc ◽  
Chris Bishop ◽  
Jernej Pleša ◽  
Nejc Šarabon

The purpose of this pilot study was to investigate the effects of change-of-direction (CoD) angle (90° vs. 180°) and the inclusion of acceleration approach on total task time, CoD deficit, and agreement regarding inter-limb asymmetry direction across CoD tasks. The sample included 13 young male handball players (age: 22.4 ± 3.2 years). The CoD tasks were performed over a 10 m distance with 90° and 180° turns. Both CoD tasks were performed under two conditions: (1) from the standing start and, (2) with a 10 m prior acceleration approach. Linear sprint times over a 10 m distance were also recorded for the purpose of determining the CoD deficit. The differences between the outcomes of different test variants were assessed with pairwise t-tests and associated Cohen’s d effect size. The agreement in terms of inter-limb asymmetry direction was assessed descriptively, using percentage of agreement. Results showed that the inclusion of the 10 m approach reduced the total task time (mean differences ranging between 0.26 and 0.35 s; d = 2.27–4.02; p < 0.002). The differences between 90° and 180° turn times were statistically significant under both conditions: (a) without approach (0.44–0.48 s; d = 4.72–4.84; all p < 0.001), and (b) with approach (0.50–0.54 s; d = 4.41–5.03; p < 0.001). The agreement regarding inter-limb asymmetry direction among the tasks was 30.7–61.5%. The differences between the tasks could be explained by the angle–velocity trade-off. The results of this study imply that the CoD tasks should not be used interchangeably when assessing inter-limb asymmetries.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1890
Author(s):  
Kyle Davey ◽  
Paul Read ◽  
Joseph Coyne ◽  
Paul Jarvis ◽  
Anthony Turner ◽  
...  

The aims of the present study are to: (1) determine within- and between-session reliability of multiple metrics obtained during the triple hop test; and (2) determine any systematic bias in both the test and inter-limb asymmetry scores for these metrics. Thirteen male young American football athletes performed three trials of a triple hop test on each leg on two separate occasions. In addition to the total distance hopped, manual detection of touch down and toe-off were calculated via video analysis, enabling flight time (for each hop), ground contact time (GCT), reactive strength index (RSI), and leg stiffness (between hops) to be calculated. Results showed all coefficient of variation (CV) values were ≤ 10.67% and intraclass correlation coefficients (ICC) ranged from moderate to excellent (0.53–0.95) in both test sessions. Intrarater reliability showed excellent reliability for all metrics (CV ≤ 3.60%, ICC ≥ 0.97). No systematic bias was evident between test sessions for raw test scores (g = −0.34 to 0.32) or the magnitude of asymmetry (g = −0.19 to 0.43). However, ‘real’ changes in asymmetry (i.e., greater than the CV in session 1) were evident on an individual level for all metrics. For the direction of asymmetry, kappa coefficients revealed poor-to-fair levels of agreement between test sessions for all metrics (K = −0.10 to 0.39), with the exception of the first hop (K = 0.69). These data show that, given the inherent limitations of distance jumped in the triple hop test, practitioners can confidently gather a range of reliable data when computed manually, provided sufficient test familiarization is conducted. In addition, although the magnitude of asymmetry appears to show only small changes between test sessions, limb dominance does appear to fluctuate between test sessions, highlighting the value of also monitoring the direction of the imbalance.


Sign in / Sign up

Export Citation Format

Share Document