grip force control
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 21)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
pp. 1-15
Author(s):  
Anna Gabriel ◽  
Carolin T. Lehner ◽  
Chiara Höhler ◽  
Thomas Schneider ◽  
Tessa P.T. Pfeiffer ◽  
...  

Background: Alzheimer’s disease (AD) affects several cognitive functions and causes altered motor function. Fine motor deficits during object manipulation are evident in other neurological conditions, but have not been assessed in dementia patients yet. Objective: Investigate reactive and anticipatory grip force control in response to unexpected and expected load force perturbation in AD. Methods: Reactive and anticipatory grip force was investigated using a grip-device with force sensors. In this pilot study, fifteen AD patients and fourteen healthy controls performed a catching task. They held the device with one hand while a sandbag was dropped into an attached receptacle either by the experimenter or by the participant. Results: In contrast to studies of other neurological conditions, the majority of AD patients exerted lower static grip force levels than controls. Interestingly, patients who were slow in the Luria’s three-step test produced normal grip forces. The timing and magnitude of reactive grip force control were largely preserved in patients. In contrast, timing and extent of anticipatory grip forces were impaired in patients, although anticipatory control was generally preserved. These deficits were correlated with decreasing Mini-Mental State Examination scores. Apraxia scores, assessed by pantomime of tool-use, did not correlate with performance in the catching task. Conclusion: We interpreted the decreased grip force in AD in the context of loss of strength and lethargy, typical for patients with AD. The lower static grip force during object manipulation may emerge as a potential biomarker for early stages of AD, but more studies with larger sample sizes are necessary.


2021 ◽  
Author(s):  
Heba Khamis ◽  
Benjamin Xia ◽  
Stephen J. Redmond

Author(s):  
Francis M. Grover ◽  
Christopher Riehm ◽  
Paula L. Silva ◽  
Tamara Lorenz ◽  
Michael A. Riley

Feedforward internal model-based control enabled by efference copies of motor commands is the prevailing theoretical account of motor anticipation. Grip force control during object manipulation-a paradigmatic example of motor anticipation-is a key line of evidence for that account. However, the internal model approach has not addressed the computational challenges faced by the act of manipulating mechanically complex objects with nonlinear, underactuated degrees of freedom. These objects exhibit complex and unpredictable load force dynamics which cannot be encoded by efference copies of underlying motor commands, leading to the prediction from the perspective of an efference copy-enabled feedforward control scheme that grip force should either lag or fail to coordinate with changes in load force. In contrast to that prediction, we found evidence for strong, precise, anticipatory grip force control during manipulations of a complex object. The results are therefore inconsistent with the internal forward model approach and suggest that efference copies of motor commands are not necessary to enable anticipatory control during active object manipulation.


2021 ◽  
pp. 154596832198934
Author(s):  
Tomoya Nakanishi ◽  
Kento Nakagawa ◽  
Hirofumi Kobayashi ◽  
Kazutoshi Kudo ◽  
Kimitaka Nakazawa

Background We recently discovered that individuals with complete spinal cord injury (SCI) have a higher grip force control ability in their intact upper limbs than able-bodied subjects. However, the neural basis for this phenomenon is unknown. Objective This study aimed to investigate the neural basis of the higher grip force control in the brains of individuals with SCI using multimodal magnetic resonance imaging (MRI). Methods Eight SCI subjects and 10 able-bodied subjects performed hand grip force control tasks at 10%, 20%, and 30% of their maximal voluntary contraction during functional MRI (fMRI). Resting-state fMRI and T1-weighted structural images were obtained to investigate changes in brain networks and structures after SCI. Results SCI subjects showed higher grip force steadiness than able-bodied subjects ( P < .05, corrected), smaller activation in the primary motor cortex ( P < .05, corrected), and deactivation of the visual cortex ( P < .001, uncorrected). Furthermore, SCI subjects had stronger functional connectivity between the superior parietal lobule and the left primary motor cortex ( P < .001, uncorrected), as well as larger gray matter volume in the bilateral superior parietal lobule ( P < .001, uncorrected). Conclusions The structural and functional reorganization observed in the superior parietal lobule of SCI subjects may represent the neural basis underlying the observed higher grip force control, and is likely responsible for the smaller activation in the primary motor cortex observed in these individuals. These findings could have applications in the fields of neurorehabilitation for improvement of intact limb functions after SCI.


2020 ◽  
Vol 12 ◽  
Author(s):  
Alisa Berger ◽  
Fabian Steinberg ◽  
Fabian Thomas ◽  
Michael Doppelmayr

Motor control is associated with suppression of oscillatory activity in alpha (8–12 Hz) and beta (12–30 Hz) ranges and elevation of oxygenated hemoglobin levels in motor-cortical areas. Aging leads to changes in oscillatory and hemodynamic brain activity and impairments in motor control. However, the relationship between age-related changes in motor control and brain activity is not yet fully understood. Therefore, this study aimed to investigate age-related and task-complexity-related changes in grip force control and the underlying oscillatory and hemodynamic activity. Sixteen younger [age (mean ± SD) = 25.4 ± 1.9, 20–30 years] and 16 older (age = 56.7 ± 4.7, 50–70 years) healthy men were asked to use a power grip to perform six trials each of easy and complex force tracking tasks (FTTs) with their right dominant hand in a randomized within-subject design. Grip force control was assessed using a sensor-based device. Brain activity in premotor and primary motor areas of both hemispheres was assessed by electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Older adults showed significantly higher inaccuracies and higher hemodynamic activity in both FTTs than did young adults. Correlations between grip force control owing to task complexity and beta activity were different in the contralateral premotor cortex (PMC) between younger and older adults. Collectively, these findings suggest that aging leads to impairment of grip force control and an increase in hemodynamic activity independent of task complexity. EEG beta oscillations may represent a task-specific neurophysiological marker for age-related decline in complex grip force control and its underlying compensation strategies. Further EEG-fNIRS studies are necessary to determine neurophysiological markers of dysfunctions underlying age-related motor disabilities for the improvement of individual diagnosis and therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document