planar triangulation
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 309 ◽  
Author(s):  
James Tilley

The 4-color theorem was proved by showing that a minimum counterexample cannot exist. Birkhoff demonstrated that a minimum counterexample must be internally 6-connected. We show that a minimum counterexample must also satisfy a coloring property that we call Kempe-locking. The novel idea explored in this article is that the connectivity and coloring properties are incompatible. We describe a methodology for analyzing whether an arbitrary planar triangulation is Kempe-locked. We provide a heuristic argument that a fundamental Kempe-locking configuration must be of low order and then perform a systematic search through isomorphism classes for such configurations. All Kempe-locked triangulations that we discovered have two features in common: (1) they are Kempe-locked with respect to only a single edge, say x y , and (2) they have a Birkhoff diamond with endpoints x and y as a subgraph. On the strength of our investigations, we formulate a plausible conjecture that the Birkhoff diamond is the only fundamental Kempe-locking configuration. If true, this would establish that the connectivity and coloring properties of a minimum counterexample are indeed incompatible. It would also imply the appealing conclusion that the Birkhoff diamond configuration alone is responsible for the 4-colorability of planar triangulations.


Author(s):  
James A. Tilley

Existing proofs of the 4-color theorem succeeded by establishing an unavoidable set of reducible configurations. By this device, their authors showed that a minimum counterexample cannot exist. G.D. Birkhoff proved that a minimum counterexample must satisfy a connectivity property that is referred to in modern parlance as internal 6-connectivity. We show that a minimum counterexample must also satisfy a coloring property, one that we call Kempe-locking. We define the terms Kempe-locking configuration and fundamental Kempe-locking configuration. We provide a heuristic argument that a fundamental Kempe-locking configuration must be of low order and then perform a systematic search through isomorphism classes for such configurations. We describe a methodology for analyzing whether an arbitrary planar triangulation is Kempe-locked; it involves deconstructing the triangulation into a stack of configurations with common endpoints and then creating a bipartite graph of coloring possibilities for each configuration in the stack to assess whether certain 2-color paths can be transmitted from the configuration's top boundary to its bottom boundary. All Kempe-locked triangulations we discovered have two features in common: (1) they are Kempe-locked with respect to only a single edge, say $xy$, and (2) they have a Birkhoff diamond with endpoints $x$ and $y$ as a proper subgraph. On the strength of our various investigations, we are led to a plausible conjecture that the Birkhoff diamond is the only fundamental Kempe-locking configuration. If true, this would establish that the connectivity and coloring properties of a minimum counterexample to the 4-color theorem are incompatible. It would also point to the singular importance of a particularly elegant 4-connected triangulation of order 9 that consists of a triangle enclosing a pentagon enclosing a single vertex.


2018 ◽  
Vol 27 (6) ◽  
pp. 946-973
Author(s):  
LAURENT MÉNARD

We develop a method to compute the generating function of the number of vertices inside certain regions of the Uniform Infinite Planar Triangulation (UIPT). The computations are mostly combinatorial in flavour and the main tool is the decomposition of the UIPT into layers, called the skeleton decomposition, introduced by Krikun [20]. In particular, we get explicit formulas for the generating functions of the number of vertices inside hulls (or completed metric balls) centred around the root, and the number of vertices inside geodesic slices of these hulls. We also recover known results about the scaling limit of the volume of hulls previously obtained by Curien and Le Gall by studying the peeling process of the UIPT in [17].


2016 ◽  
Vol 9 (48) ◽  
Author(s):  
K. Thiagarajan ◽  
J. Padmashree ◽  
Ponnammal Natarajan
Keyword(s):  

2016 ◽  
Vol 53 (3) ◽  
pp. 846-856 ◽  
Author(s):  
Andrea Collevecchio ◽  
Abbas Mehrabian ◽  
Nick Wormald

AbstractLet r and d be positive integers with r<d. Consider a random d-ary tree constructed as follows. Start with a single vertex, and in each time-step choose a uniformly random leaf and give it d newly created offspring. Let 𝒯d,t be the tree produced after t steps. We show that there exists a fixed δ<1 depending on d and r such that almost surely for all large t, every r-ary subtree of 𝒯d,t has less than tδ vertices. The proof involves analysis that also yields a related result. Consider the following iterative construction of a random planar triangulation. Start with a triangle embedded in the plane. In each step, choose a bounded face uniformly at random, add a vertex inside that face and join it to the vertices of the face. In this way, one face is destroyed and three new faces are created. After t steps, we obtain a random triangulated plane graph with t+3 vertices, which is called a random Apollonian network. We prove that there exists a fixed δ<1, such that eventually every path in this graph has length less than t𝛿, which verifies a conjecture of Cooper and Frieze (2015).


Author(s):  
Kenichi Kanatani ◽  
Yasuyuki Sugaya ◽  
Yasushi Kanazawa
Keyword(s):  

2012 ◽  
Vol DMTCS Proceedings vol. AQ,... (Proceedings) ◽  
Author(s):  
Sarah Miracle ◽  
Dana Randall ◽  
Amanda Pascoe Streib ◽  
Prasad Tetali

International audience Given a planar triangulation, a 3-orientation is an orientation of the internal edges so all internal vertices have out-degree three. Each 3-orientation gives rise to a unique edge coloring known as a $\textit{Schnyder wood}$ that has proven useful for various computing and combinatorics applications. We consider natural Markov chains for sampling uniformly from the set of 3-orientations. First, we study a "triangle-reversing'' chain on the space of 3-orientations of a fixed triangulation that reverses the orientation of the edges around a triangle in each move. We show that (i) when restricted to planar triangulations of maximum degree six, the Markov chain is rapidly mixing, and (ii) there exists a triangulation with high degree on which this Markov chain mixes slowly. Next, we consider an "edge-flipping'' chain on the larger state space consisting of 3-orientations of all planar triangulations on a fixed number of vertices. It was also shown previously that this chain connects the state space and we prove that the chain is always rapidly mixing.


Sign in / Sign up

Export Citation Format

Share Document