pillar strength
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
B.P. Watson ◽  
W. Theron ◽  
N. Fernandes ◽  
W.O. Kekana ◽  
M.P. Mahlangu ◽  
...  

The research described in this paper was done to confirm the Upper Group 2 (UG2) PlatMine peak pillar strength formula (Watson et al., 2007), which was determined from a back-analysis of failed and unfailed pillars. Underground measurements were made on a stable pillar that was loaded by firstly reducing it's length and then by mining the surrounding pillars until pillar failure took place. The pillar was instrumented with suitably positioned strain cells and closure meters, which allowed both the average pillar stress and strain to be determined. The paper describes the methodology applied to identify a suitable position for the instrumentation, as well as the results. A stress/strain curve is presented for a UG2 pillar with a w/h ratio of 2.0, at Booysendal Platinum Mine. The measured pillar strength was similar to the predicted strength using the PlatMine pillar strength formula for UG2 pillars. The PlatMine formula has been successfully implemented on Booysendal Platinum Mine, and about 3 670 pillars have been cut without a single failure. An additional revenue of US$1.3 billion was calculated for the 25-year life of the mine as a direct result of the improved pillar design, given the January 2020 platinum group metals basket price. An extended life of mine and better mining efficiencies will also be realized.


Author(s):  
B.P. Watson ◽  
R.A. Lamos ◽  
D.P. Roberts

The Upper Group 2 (UG2) chromitite reef is a shallow-dipping stratiform tabular orebody in the South African Bushveld Complex, which strikes for hundreds of kilometres. Mining is extensive, with depths ranging from close-to-surface to 2 500 m. Pillars are widely used to support the open stopes and bords. Little work has been done in the past to determine the strength of pillars on the UG2 Reef and design was done using formulae developed for other hard-rock mines. This has led to oversized pillars with consequent sterilization of ore. In this paper we describe a back-analysis of stable and failed UG2 pillars on the Bushveld platinum mines, and provides a strength formula for UG2 pillars. The formula may be used cautiously on all Bushveld platinum mines with similar geotechnical, geometrical, and geomechanical conditions to the pillars in the database.


Author(s):  
D.F. Malan ◽  
J.A.L. Napier

SYNOPSIS This paper describes some important aspects associated with historical underground measurements in South African gold and coal mines. Deformation measurements were used to confirm the use of elastic theory to simulate the rock mass behaviour in the Witwatersrand gold mines in the 1960s. Although a prominent time-dependent component of stope closure was measured as early as the 1930s, it was ignored owing to the benefit of adopting elastic theory. Neglecting the time-dependent response of the rock for many decades resulted in important aspects such as the effect of mining rate, the effect of advance per blast, and the need for enhanced design criteria not being explored. Recent work is only now starting to address this gap in knowledge. In-situ measurements of large coal specimens in the 1960s and 1970s indicated that a linear formula may possibly be a better approximation of coal pillar strengths. This alternative formulation was never adopted, however, as the power law strength formula was already deeply entrenched in the industry at that stage. In spite of these apparent failures to continuously generate and adopt new knowledge, a key lesson learnt is that major advances in rock mechanics will not be possible without careful monitoring of the rock mass behaviour in experimental sites. Areas requiring further research, such as pillar strength formulae for the Bushveld Complex and enhanced design criteria for the gold mines, can only be developed using extensive underground monitoring programmes. Keywords: rock engineering, underground monitoring, elastic theory, time-dependence, pillar strength.


2020 ◽  
Vol 1 (1) ◽  
pp. 20-24
Author(s):  
Ratih Hardini Kusuma Putri

In underground coal mines, coal pillars play a major rule in sustaining the weight of the overburden and protecting the stability of the entries and crosscut during mine development and production, allowing the miners to safely extract the coal¹. The determination of a coal pillar size is adjusted to the expected load and strength of the coal seam. It needs to consider several factors such as pillar load (stress within the pillar), pillar strength, and safety factors. In this determination, an analysis will be conducted using five similar coal pillar strengths including; Obert-Duvall Equation (1967), Holland Equation (1964), Holland-Gaddy Equation (1956), Salamon-Munro Equation (1967), and Bieniawski (1983). Using AirLaya seam as an example, we can combine the results of various equations. The coal used in the Airlaya research area has a value of k = 425.75, thus the strength of Airlaya insitu seam coal is estimated to be 161,607 Psi.


2020 ◽  
Vol 38 (4) ◽  
pp. 4033-4044
Author(s):  
Qingyang Ren ◽  
Feifei Wang ◽  
Bin Chen ◽  
Mengyuan Zhao ◽  
Zijian Peng ◽  
...  

Author(s):  
Simon Heru Prassetyo ◽  
Muhammad Alen Irnawan ◽  
Ganda Marihot Simangunsong ◽  
Ridho Kresna Wattimena ◽  
Irwandy Arif ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document