scholarly journals Coal Pillar Strength Formula in Indonesian coal mines

2020 ◽  
Vol 1 (1) ◽  
pp. 20-24
Author(s):  
Ratih Hardini Kusuma Putri

In underground coal mines, coal pillars play a major rule in sustaining the weight of the overburden and protecting the stability of the entries and crosscut during mine development and production, allowing the miners to safely extract the coal¹. The determination of a coal pillar size is adjusted to the expected load and strength of the coal seam. It needs to consider several factors such as pillar load (stress within the pillar), pillar strength, and safety factors. In this determination, an analysis will be conducted using five similar coal pillar strengths including; Obert-Duvall Equation (1967), Holland Equation (1964), Holland-Gaddy Equation (1956), Salamon-Munro Equation (1967), and Bieniawski (1983). Using AirLaya seam as an example, we can combine the results of various equations. The coal used in the Airlaya research area has a value of k = 425.75, thus the strength of Airlaya insitu seam coal is estimated to be 161,607 Psi.

Author(s):  
B.A. Poulsen ◽  
B. Shen ◽  
D.J. Williams ◽  
C. Huddlestone-Holmes ◽  
N. Erarslan ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yong Zhang ◽  
Jinkun Yang ◽  
Jiaxuan Zhang ◽  
Xiaoming Sun ◽  
Chen Chen ◽  
...  

Mining in close distance coal seams (CDCSs) is frequently associated with engineering disasters because of the complicated nature of stress distribution within CDCSs. In order to establish a layout of a roadway to minimize the occurrence of disasters associated with mining CDCS, here the spatial and temporal evolution of stress distribution during the multiworking face mining of a CDCS was explored through numerical simulation based on the engineering and geological conditions of the Nantun Coal Mine. The numerical simulation results indicate that, after the extraction of adjacent multiple working faces, the spatial distribution of stress can be characterized with areas of increased, reduced, and intact stress. The superposed stress of inclined seams that are very close to each other propagates through coal pillars in the bottom floor, and this propagation follows neither the line along the axis of the coal pillar nor the line perpendicular to the direction of the floor. It instead propagates along a line angled with the axis of the coal pillar. The roadway can be arranged in the area with reduced stress, to improve its the stability. Based on the computed spatial and temporal evolution of stress, an optimized layout of roadway was proposed. This layout features a reasonable interval between the mining roadway and a minimal proportion of increased stress areas along the mining roadway and is aligned with geological structures.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5732
Author(s):  
Peng Li ◽  
Xingping Lai ◽  
Peilin Gong ◽  
Chao Su ◽  
Yonglu Suo

Affected by high ground stress, the surrounding rock control of a roadway is one of the most important factors restricting the utilization of deep resources. Therefore, it is necessary to propose a method to improve the stress environment of the deep-buried roadway and reduce its deformation. The article focuses on the 121,302 machine roadway in Kouzidong coal mine to analyze the large deformations of roadways near goafs (RNGs) in deep coal mines and reveal the mechanisms related to pressure relief via roof cutting. Through physical simulation, overburdened structures and the migration laws of RNGs in deep coal mines are studied, and the overburdened RNGs will eventually have a double short-arm “F”-type suspended roof structure. The superposition movement of the structure is the prime cause for the large deformation of the RNGs considered here. Artificial roof cutting can weaken the superposition effect of the double “F” structure and induce the roof to produce a new fracture. Meanwhile, sliding deformation along the fault line releases greater stress, and the cut roof can better fill the goaf. The stress distribution ratio between goafs and the coal pillar is improved. Here, a mechanical model of key block B’ (KBB’) is considered and the stability criterion of KBB’ is obtained. According to the theoretical calculation here, the stress of a coal pillar could be reduced by 19.14% when KBB’ is cut along the edge of the coal pillar in the 121,302 machine roadway. After engineering verification, the field observation result shows that the deformation of the 121,302 machine roadway is reduced by more than 50% after roof cutting.


Sign in / Sign up

Export Citation Format

Share Document