morning transition
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 21 (17) ◽  
pp. 13207-13225
Author(s):  
Alice Henkes ◽  
Gilberto Fisch ◽  
Luiz A. T. Machado ◽  
Jean-Pierre Chaboureau

Abstract. Observations of the boundary layer (BL) processes are analyzed statistically for dry seasons of 2 years and in detail, as case studies, for 4 shallow convective days (ShCu) and 4 shallow-to-deep convective days (ShDeep) using a suite of ground-based measurements from the Observation and Modeling of the Green Ocean Amazon (GoAmazon 2014/5) Experiment. The BL stages in ShDeep days, from the nighttime to the cloudy mixing layer stage, are then described in comparison with ShCu days. Atmospheric thermodynamics and dynamics, environmental profiles, and surface turbulent fluxes were employed to compare these two distinct situations for each stage of the BL evolution. Particular attention is given to the morning transition stage, in which the BL changes from stable to unstable conditions in the early morning hours. Results show that the decrease in time duration of the morning transition on ShDeep days is associated with high humidity and well-established vertical wind shear patterns. Higher humidity since nighttime not only contributes to lowering the cloud base during the rapid growth of the BL but also contributes to the balance between radiative cooling and turbulent mixing during nighttime, resulting in higher sensible heat flux in the early morning. The sensible heat flux promotes rapid growth of the well-mixed layer, thus favoring the deeper BL starting from around 08:00 LST (UTC−4 h). Under these conditions, the time duration of morning transition is used to promote convection, having an important effect on the convective BL strength and leading to the formation of shallow cumulus clouds and their subsequent evolution into deep convective clouds. Statistical analysis was used to validate the conceptual model obtained from the case studies. Despite the case-to-case variability, the statistical analyses of the processes in the BL show that the described processes are very representative of cloud evolution during the dry season.


2021 ◽  
Author(s):  
Sofia Farina ◽  
Francesco Barbano ◽  
Silvana Di Sabatino ◽  
Mattia Marchio ◽  
Dino Zardi

<p>Thermally driven winds observed in complex terrain are characterized by a daily cycle dominated by two main phases: a diurnal phase in which winds blow upslope (anabatic), and a nocturnal one in which they revert their direction and blow downslope (katabatic). This alternating pattern also implies two transition phases, following sunrise and sunset respectively. </p><p>Here we study the upslope component of the slope wind with a focus on the morning transition from the katabatic to the anabatic flow based on data from the MATERHORN experiment, performed in Salt Lake Desert (Utah) between Fall 2012 and Spring 2013 (Fernando et al, 2015). </p><p>First of all, a criterion for the selection of purely thermally driven slope wind days is proposed and adopted to select five case studies, taken from both the spring and the autumn periods. Then, the analysis allowed the investigation of the driving mechanisms through the connection with the patterns of erosion of the nocturnal inversion in the valley bed at the foot of the slope under analysis. Three main patterns of erosion of the inversion in the particular topography of a gentle and isolated slope are identified: a) erosion due to upward growth of a convective boundary layer, b) erosion due to descent of the inversion top, and c) erosion due to a mix of the two previous mechanisms. The three patterns are then linked to the initiation of the transition by two different and competing mechanisms: mixing from above (top-down dilution) and surface heating from below. Finally, an analytical model for the description of slope circulation (Zardi and Serafin, 2015) has been used to diagnose the time of the transition.</p><p>Zardi, D. and S. Serafin, 2015: An analytic solution for daily-periodic thermally-driven slope flow. Quart. J. Roy. Meteor. Soc., 141, 1968–1974. </p><p>Fernando, H. J. S., Pardyjak, E. R., Di Sabatino, S., Chow, F. K., De Wekker, S. F. J., Hoch, S. W, Zsedrovits, T., 2015, The MATERHORN: Unraveling the intricacies of mountain weather. <em>Bulletin Of The American Meteorological Society</em>, 96, 1945-1967. </p>


2021 ◽  
Author(s):  
Alice Henkes ◽  
Gilberto Fisch ◽  
Luiz Augusto Toledo Machado ◽  
Jean-Pierre Chaboureau

Abstract. Observations of the boundary layer (BL) processes are analyzed in four shallow convective days (ShCu) and four shallow-to-deep convective days (ShDeep) using a suite of ground-based measurements from the second Intensive Operating Period as part of the Observation and Modeling of the Green Ocean Amazon (IOP2; GoAmazon 2014/5) Experiment. The BL stages in ShDeep days, from the nighttime to the cloudy mixing layer stage, are then described in comparison with ShCu days. Atmosphere thermodynamics and dynamics, environmental profiles, and surface fluxes were employed to compare these two distinct situations for each stage of the BL evolution. Particular attention is given to the morning transition stage, in which the BL changes from stable to unstable conditions in the early morning hours. Results show that the duration of the morning transition on ShDeep days decreases under high humidity and intense vertical wind shear. Higher humidity since nighttime not only contributes to lowering the cloud base during the rapid growth of the BL but also contributes to the balance between radiative cooling and turbulent mixing during nighttime, resulting in large sensible heat flux in the early morning. A large sensible heat flux promotes rapid growth of the well-mixed layer, thus favoring the deeper BL starting from around 08:00 LST. Under these conditions, turbulent mixing provides a lifting mechanism by which air parcels reach the lifting condensation level, leading to the formation of shallow cumulus clouds and their subsequent evolution into deep convective clouds.


2021 ◽  
Author(s):  
Sofia Farina ◽  
Dino Zardi ◽  
Silvana Di Sabatino ◽  
Mattia Marchio ◽  
Francesco Barbano

<p>Thermally driven winds observed in complex terrain are characterized by a daily cycle dominated by two main phases: a diurnal phase in which winds blow upslope (anabatic), and a nocturnal one in which they revert their direction and blow down slope (katabatic). This alternating pattern also implies two transition phases, following sunrise and sunset respectively. </p><p>Here we study the up-slope component of the slope wind with a focus on the morning transition based on from the MATERHORN experiment, performed in Salt Lake Desert (Utah) between Fall 2012 and Spring 2013. </p><p>The analysis develops along three main paths of investigation. The first one is the selection of the suitable conditions for the study of the diurnal component and the characterization of the morning transition. The second one focuses on the deep analysis of the erosion of the nocturnal inversion at the foot of the slope in order to investigate the physical mechanisms driving it. And the third one consists in the comparison between the experimental data and the results of an analytical model (Zardi and Serafin, 2015). The study of the morning transition in the selected case studies allowed its characterization in terms of the relation with the solar radiation cycle, in terms of its seasonality and in terms of its propagation along the slope and along the vertical direction. Most of the results of this investigation are related to the identification of the main mechanisms of erosion of the nocturnal inversion at the foot of the slope and to its role to the beginning of the transition itself. Finally, it is shown how the above model can fairly reproduce the cycle between anabatic and katabatic flow and their intensity.</p><p>Zardi, D. and S. Serafin, 2015: An analytic solution for daily-periodic thermally-driven slope flow. Quart. J. Roy. Meteor. Soc., 141, 1968–1974.</p>


2018 ◽  
Vol 20 (5) ◽  
pp. 1199-1220 ◽  
Author(s):  
Daniel F. Nadeau ◽  
Holly J. Oldroyd ◽  
Eric R. Pardyjak ◽  
Nicolas Sommer ◽  
Sebastian W. Hoch ◽  
...  

2016 ◽  
Vol 73 (12) ◽  
pp. 4873-4894 ◽  
Author(s):  
D. Finn ◽  
B. Reese ◽  
B. Butler ◽  
N. Wagenbrenner ◽  
K. L. Clawson ◽  
...  

Abstract A field study was conducted of flows in the Birch Creek Valley in eastern Idaho. There is a distinct topographic constriction in the Birch Creek Valley that creates two subbasins: an upper and lower valley. The data were classified into one of three groups based on synoptic influence (weak/absent, high wind speeds, and other evidence of synoptic influence). Gap flows commonly developed downwind of the constriction in association with the weak/absent group but also occurred in association with the two synoptic groups suggesting the potential for more diverse origins. In general, the frequency and strength of gap flows appeared to be linked to the development of the requisite thermal regime and minimization of any synoptically driven southerly winds that would suppress outflows. Gap flows were characterized by high wind speeds with jetlike vertical profiles along the axis of the lower valley. For all three groups the morning transition in the upper valley and western sidewall usually proceeded slightly ahead of the lower valley, consistent with the principles of the topographic amplification factor. The persistence of southerly winds in the lower valley past evening transition inhibited the development of gap flows, promoted strong nighttime inversions, and delayed the onset of morning transition relative to the upper valley. Nocturnal temperature inversions in the lower valley were largely eliminated with the onset of strong gap flows resulting in earlier morning transitions there. The form for a method of predicting gap flow wind speeds is proposed.


2016 ◽  
Vol 172-173 ◽  
pp. 95-108 ◽  
Author(s):  
Maria A. Jiménez ◽  
Gemma Simó ◽  
Burkhard Wrenger ◽  
Maja Telisman-Prtenjak ◽  
Jose A. Guijarro ◽  
...  

2014 ◽  
Vol 14 (9) ◽  
pp. 4515-4530 ◽  
Author(s):  
E. Blay-Carreras ◽  
D. Pino ◽  
J. Vilà-Guerau de Arellano ◽  
A. van de Boer ◽  
O. De Coster ◽  
...  

Abstract. Observations, mixed-layer theory and the Dutch Large-Eddy Simulation model (DALES) are used to analyze the dynamics of the boundary layer during an intensive operational period (1 July 2011) of the Boundary Layer Late Afternoon and Sunset Turbulence campaign. Continuous measurements made by remote sensing and in situ instruments in combination with radio soundings, and measurements done by remotely piloted aircraft systems and two manned aircrafts probed the vertical structure and the temporal evolution of the boundary layer during the campaign. The initial vertical profiles of potential temperature, specific humidity and wind, and the temporal evolution of the surface heat and moisture fluxes prescribed in the models runs are inspired by some of these observations. The research focuses on the role played by the residual layer during the morning transition and by the large-scale subsidence on the evolution of the boundary layer. By using DALES, we show the importance of the dynamics of the boundary layer during the previous night in the development of the boundary layer at the morning. DALES numerical experiments including the residual layer are capable of modeling the observed sudden increase of the boundary-layer depth during the morning transition and the subsequent evolution of the boundary layer. These simulations show a large increase of the entrainment buoyancy flux when the residual layer is incorporated into the mixed layer. We also examine how the inclusion of the residual layer above a shallow convective boundary layer modifies the turbulent kinetic energy budget. Large-scale subsidence mainly acts when the boundary layer is fully developed, and, for the studied day, it is necessary to be considered to reproduce the afternoon observations. Finally, we also investigate how carbon dioxide (CO2) mixing ratio stored the previous night in the residual layer plays a fundamental role in the evolution of the CO2 mixing ratio during the following day.


Sign in / Sign up

Export Citation Format

Share Document