nocturnal inversion
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 7)

H-INDEX

15
(FIVE YEARS 0)

MAUSAM ◽  
2022 ◽  
Vol 45 (3) ◽  
pp. 229-234
Author(s):  
R. SURESH

Th ere is rapid decrease in \isib ihl }' l1uri ne r a tly Illumine hou rs in winter season o ver Santacruzairport .Th e deterioration at times preve nt... a irc ra ft ope ra tio n in uu u for about ) ho ur or so ,Th e cau ses of red uct io n invisibility. l":.. strong nocturnal inversion {lew level ). poll ut ion in th e lower atmosphe re. lighl ....'ind etc have beenanalySt"d in th is paper. It was c bserved th at ind us trial end domestic po ll ution together with strong low level noctu rn a lin version causes poor visibility, Visib ility attains double minima-one between 1800 and 2UOO UTC and th e othe rbetween 0200 and 0300 lITC. An objective me thod 10 forec ast visibility in th e next 2 to 3 hOUfShas been d eveloped inthis paper.


MAUSAM ◽  
2021 ◽  
Vol 58 (4) ◽  
pp. 501-512
Author(s):  
R. SURESH ◽  
M. V. JANAKIRAMAYYA ◽  
E. R. SUKUMAR

Climatologically (based on 1951-1980) the annual fog frequency of Chennai airport is 4.3 days. But, the operational aviation meteorological forecasters often experienced more number of foggy days during the past decade. Hence the fog frequency has been critically analysed based on current weather observations made by aerodrome meteorological office, Chennai during 1981-2002 (barring 1984 for which data is not readily available). It has been found that the annual frequency based on the present study has shot up to 21.5 days. The most favourable period for fog over Chennai airport has been identified as January followed by February and March. The formation of fog has been mostly observed during 0000-0200 UTC although in good number of cases it was during 2200-2400 UTC. The most common duration of fog is 60-120 minutes albeit duration as high as 540-570 minutes are also probable. The low level (surface) nocturnal inversion frequency has alarmingly increased during 1990s and the inversion is almost a day-to-day phenomenon during 2000s. Rapid urbanisation, vehicular traffic and industrial growth could be the cause for the increased  atmospheric pollution which has  increased the nocturnal stability conditions as well the fog frequency. Visibility as low as zero had been recorded on a number of cases and their causes  have been analysed. Neutral or absolutely unstable stratification at 1200 UTC coupled with high relative humidity and high concentration of pollution cause the fog to form from 2200 UTC onwards and the nocturnal surface inversion / isotherm at 0000 UTC maintains the fog. Though the low level inversion maintains the fog once it is formed already, inversion alone is not a sufficient condition for the formation of fog.


2021 ◽  
Author(s):  
Hernán Bechis ◽  
Milagros Alvarez Imaz ◽  
Inés Simone ◽  
Victoria Galligani ◽  
Maite Cancelada ◽  
...  

<p>Storms in the Mendoza province, Argentina are known for frequently producing large and severe hail. The environmental conditions and strong interaction with topography there provide unique conditions for the initiation and intensification of severe storms. The RELAMPAGO (Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations) and CACTI (Clouds, Aerosols, and Complex Terrain Interactions) field campaigns were deployed between October 2018 to April 2019 over west-central Argentina, and have collected unprecedented Intensive Observation Periods (IOPs) in the region. During the IOP number 10 on November 26, 2018, a severe hailstorm developed and moved across the observational network in the Mendoza domain. 4-cm diameter hail was reported over multiple hailpad sites and with in-situ measurements. Several soundings, mobile and fixed radar observations, and surface observations are available for this case, along with 1-min GOES-16 ABI Mesoscale Domain Sector (MDS) data coverage.</p><p>High-temporal frequency soundings and surface observations collected prior to the convection initiation are analyzed, allowing a detailed description of the storm environment. Processes leading to convective initiation over the higher terrain include the development of the upslope flow associated with a mountain-plains circulation, the weakening and ascent of the nocturnal inversion owing to diurnal heating and mixed-layer growth, and upper-level cooling related to the advance of a shortwave trough. Once the storm initiates, it moves eastward towards the lower terrain, where the higher CAPE and deep-layer shear environment support the transition into a supercell. It is after this transition that the most severe hail at the surface is observed.</p>


2021 ◽  
Author(s):  
Sofia Farina ◽  
Francesco Barbano ◽  
Silvana Di Sabatino ◽  
Mattia Marchio ◽  
Dino Zardi

<p>Thermally driven winds observed in complex terrain are characterized by a daily cycle dominated by two main phases: a diurnal phase in which winds blow upslope (anabatic), and a nocturnal one in which they revert their direction and blow downslope (katabatic). This alternating pattern also implies two transition phases, following sunrise and sunset respectively. </p><p>Here we study the upslope component of the slope wind with a focus on the morning transition from the katabatic to the anabatic flow based on data from the MATERHORN experiment, performed in Salt Lake Desert (Utah) between Fall 2012 and Spring 2013 (Fernando et al, 2015). </p><p>First of all, a criterion for the selection of purely thermally driven slope wind days is proposed and adopted to select five case studies, taken from both the spring and the autumn periods. Then, the analysis allowed the investigation of the driving mechanisms through the connection with the patterns of erosion of the nocturnal inversion in the valley bed at the foot of the slope under analysis. Three main patterns of erosion of the inversion in the particular topography of a gentle and isolated slope are identified: a) erosion due to upward growth of a convective boundary layer, b) erosion due to descent of the inversion top, and c) erosion due to a mix of the two previous mechanisms. The three patterns are then linked to the initiation of the transition by two different and competing mechanisms: mixing from above (top-down dilution) and surface heating from below. Finally, an analytical model for the description of slope circulation (Zardi and Serafin, 2015) has been used to diagnose the time of the transition.</p><p>Zardi, D. and S. Serafin, 2015: An analytic solution for daily-periodic thermally-driven slope flow. Quart. J. Roy. Meteor. Soc., 141, 1968–1974. </p><p>Fernando, H. J. S., Pardyjak, E. R., Di Sabatino, S., Chow, F. K., De Wekker, S. F. J., Hoch, S. W, Zsedrovits, T., 2015, The MATERHORN: Unraveling the intricacies of mountain weather. <em>Bulletin Of The American Meteorological Society</em>, 96, 1945-1967. </p>


2021 ◽  
Author(s):  
Sofia Farina ◽  
Dino Zardi ◽  
Silvana Di Sabatino ◽  
Mattia Marchio ◽  
Francesco Barbano

<p>Thermally driven winds observed in complex terrain are characterized by a daily cycle dominated by two main phases: a diurnal phase in which winds blow upslope (anabatic), and a nocturnal one in which they revert their direction and blow down slope (katabatic). This alternating pattern also implies two transition phases, following sunrise and sunset respectively. </p><p>Here we study the up-slope component of the slope wind with a focus on the morning transition based on from the MATERHORN experiment, performed in Salt Lake Desert (Utah) between Fall 2012 and Spring 2013. </p><p>The analysis develops along three main paths of investigation. The first one is the selection of the suitable conditions for the study of the diurnal component and the characterization of the morning transition. The second one focuses on the deep analysis of the erosion of the nocturnal inversion at the foot of the slope in order to investigate the physical mechanisms driving it. And the third one consists in the comparison between the experimental data and the results of an analytical model (Zardi and Serafin, 2015). The study of the morning transition in the selected case studies allowed its characterization in terms of the relation with the solar radiation cycle, in terms of its seasonality and in terms of its propagation along the slope and along the vertical direction. Most of the results of this investigation are related to the identification of the main mechanisms of erosion of the nocturnal inversion at the foot of the slope and to its role to the beginning of the transition itself. Finally, it is shown how the above model can fairly reproduce the cycle between anabatic and katabatic flow and their intensity.</p><p>Zardi, D. and S. Serafin, 2015: An analytic solution for daily-periodic thermally-driven slope flow. Quart. J. Roy. Meteor. Soc., 141, 1968–1974.</p>


2021 ◽  
Vol 60 (2) ◽  
pp. 223-236
Author(s):  
Michael Weston ◽  
Marouane Temimi ◽  
Roelof Burger ◽  
Stuart Piketh

AbstractFog has a significant effect on aviation and road transport networks around the world. The International Airport in Abu Dhabi, United Arab Emirates, experiences dense fog during winter months that affect operations at the airport. We describe the fog climatology at the airport using 36 years of aviation routine weather reports (METAR), an important long-term data source, and report on the number of fog days per year, the seasonal cycle, the diurnal cycle, and the duration of fog events. Fog days per year vary from 8 to 51, with a mean of ~23.91 days (standard deviation of 9.83). Events are most frequent from September until March, with December and January being the most active months. November, unexpectedly, has a low number of fog days, which appears to be due to a decrease in aerosol loading in the atmosphere. The most fog days experienced in one month is 13 (March 2004). Fog occurs any time from 1900 to 1100 local time, and the frequency increases as night progresses, peaking around sunrise. Fog events most frequently last 1 h or less. Events of 9 h or more were recorded in January and December, with the longest event lasting 16 h. Events are strongly dependent on the land–sea breeze and seldom form when the wind is blowing from the Arabian Gulf. The thickness of the nocturnal inversion layer increases up to about 500 m AGL on fog days as compared with 273 m AGL on clear-sky days. This study is the first to use the 36-yr dataset to characterize fog climatology at Abu Dhabi Airport.


2021 ◽  
Vol 78 (1) ◽  
pp. 313-327
Author(s):  
Kevin R. Haghi ◽  
Dale R. Durran

AbstractThe dynamics of a prototypical atmospheric bore are investigated through a series of two-dimensional numerical simulations and linear theory. These simulations demonstrate that the bore dynamics are inherently finite amplitude. Although the environment supports linear trapped waves, the supported waves propagate in roughly the opposite direction to that of the bore. Qualitative analysis of the Scorer parameter can therefore give misleading indications of the potential for wave trapping, and linear internal gravity wave dynamics do not govern the behavior of the bore. The presence of a layer of enhanced static stability below a deep layer of lower stability, as would be created by a nocturnal inversion, was not necessary for the development of a bore. The key environmental factor allowing bore propagation was the presence of a low-level jet directed opposite to the movement of the bore. Significant turbulence developed in the layer between the jet maximum and the surface, which reduced the low-level static stability behind the bore. Given the essential role of jets and thereby strong environmental wind shear, and given that idealized bores may persist in environments in which the static stability is constant with height, shallow-water dynamics do not appear to be quantitatively applicable to atmospheric bores propagating against low-level jets, although there are qualitative analogies.


2017 ◽  
Vol 21 (1) ◽  
pp. 533-548 ◽  
Author(s):  
Stephen D. Parkes ◽  
Matthew F. McCabe ◽  
Alan D. Griffiths ◽  
Lixin Wang ◽  
Scott Chambers ◽  
...  

Abstract. The stable isotopic composition of water vapour provides information about moisture sources and processes difficult to obtain with traditional measurement techniques. Recently, it has been proposed that the D-excess of water vapour (dv  =  δ2H − 8  ×  δ18O) can provide a diagnostic tracer of continental moisture recycling. However, D-excess exhibits a diurnal cycle that has been observed across a variety of ecosystems and may be influenced by a range of processes beyond regional-scale moisture recycling, including local evaporation (ET) fluxes. There is a lack of measurements of D-excess in evaporation (ET) fluxes, which has made it difficult to assess how ET fluxes modify the D-excess in water vapour (dv). With this in mind, we employed a chamber-based approach to directly measure D-excess in ET (dET) fluxes. We show that ET fluxes imposed a negative forcing on the ambient vapour and could not explain the higher daytime dv values. The low dET observed here was sourced from a soil water pool that had undergone an extended drying period, leading to low D-excess in the soil moisture pool. A strong correlation between daytime dv and locally measured relative humidity was consistent with an oceanic moisture source, suggesting that remote hydrological processes were the major contributor to daytime dv variability. During the early evening, ET fluxes into a shallow nocturnal inversion layer caused a lowering of dv values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate d


2016 ◽  
Vol 16 (23) ◽  
pp. 14959-14977 ◽  
Author(s):  
Yee Jun Tham ◽  
Zhe Wang ◽  
Qinyi Li ◽  
Hui Yun ◽  
Weihao Wang ◽  
...  

Abstract. Nitryl chloride (ClNO2) is a dominant source of chlorine radical in polluted environment, and can significantly affect the atmospheric oxidative chemistry. However, the abundance of ClNO2 and its exact role are not fully understood under different environmental conditions. During the summer of 2014, we deployed a chemical ionization mass spectrometer to measure ClNO2 and dinitrogen pentoxide (N2O5) at a rural site in the polluted North China Plain. Elevated mixing ratios of ClNO2 (> 350 pptv) were observed at most of the nights with low levels of N2O5 (< 200 pptv). The highest ClNO2 mixing ratio of 2070 pptv (1 min average) was observed in a plume from a megacity (Tianjin), and was characterized with a faster N2O5 heterogeneous loss rate and ClNO2 production rate compared to average conditions. The abundant ClNO2 concentration kept increasing even after sunrise, and reached a peak 4 h later. Such highly sustained ClNO2 peaks after sunrise are discrepant from the previously observed typical diurnal pattern. Meteorological and chemical analysis shows that the sustained ClNO2 morning peaks are caused by significant ClNO2 production in the residual layer at night followed by downward mixing after breakup of the nocturnal inversion layer in the morning. We estimated that  ∼  1.7–4.0 ppbv of ClNO2 would exist in the residual layer in order to maintain the observed morning ClNO2 peaks at the surface site. Observation-based box model analysis show that photolysis of ClNO2 produced chlorine radical with a rate up to 1.12 ppbv h−1, accounting for 10–30 % of primary ROx production in the morning hours. The perturbation in total radical production leads to an increase of integrated daytime net ozone production by 3 % (4.3 ppbv) on average, and with a larger increase of 13 % (11 ppbv) in megacity outflow that was characterized with higher ClNO2 and a relatively lower oxygenated hydrocarbon (OVOC) to non-methane hydrocarbon (NMHC) ratio.


Author(s):  
Matthew R. Clark

Near-surface air temperature (NSAT) anomalies during the 20 March 2015 solar eclipse are investigated at 266 UK sites, using operational data. The high density of observing sites, together with the wide range of ambient meteorological conditions, provided an unprecedented opportunity for analysis of the spatial variability of NSAT anomalies under relatively uniform eclipse conditions. Anomalies ranged from −0.03°C to −4.23°C (median −1.02°C). The maximum (negative) anomaly lagged the maximum obscuration by 15 min on average. Cloud cover impacted strongly on NSAT anomalies, with larger anomalies in clear-sky situations ( p <0.0001). Weaker, but statistically significant, correlations were found with wind speed (larger anomalies in weaker winds), proximity to coast (larger anomalies at inland sites), topography (larger anomalies in topographical low points) and land cover (larger anomalies over vegetated surfaces). In this mid-morning eclipse, the topographical influences on NSAT anomalies were apparently dominated by variations in residual nocturnal inversion strength, as suggested by significant correlations between post-sunrise temperature and NSAT anomaly at clear-sky sites (larger negative anomalies with lower post-sunrise temperatures). The largest NSAT anomaly occurred at a coastal site where flow transitioned from onshore to offshore during the eclipse, in a situation with large coastal temperature gradients associated with antecedent nocturnal cooling. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’.


Sign in / Sign up

Export Citation Format

Share Document