Wind-Solar-Load Power Scenario Reduction Based on Residual Multi-Channel Convolutional Auto-Encoders

Author(s):  
Yang Cao ◽  
Haifeng Huang ◽  
Hong Zhang ◽  
Xiaolu Li ◽  
Yuzheng Peng ◽  
...  
Author(s):  
V.M. Spirin ◽  
◽  
V.M. Gubarevych ◽  
V.G. Grebenyuk ◽  
S.V. Salko ◽  
...  
Keyword(s):  

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1889 ◽  
Author(s):  
Nicu Bizon ◽  
Valentin Alexandru Stan ◽  
Angel Ciprian Cormos

In this paper, a systematic analysis of seven control topologies is performed, based on three possible control variables of the power generated by the Fuel Cell (FC) system: the reference input of the controller for the FC boost converter, and the two reference inputs used by the air regulator and the fuel regulator. The FC system will generate power based on the Required-Power-Following (RPF) control mode in order to ensure the load demand, operating as the main energy source in an FC hybrid power system. The FC system will operate as a backup energy source in an FC renewable Hybrid Power System (by ensuring the lack of power on the DC bus, which is given by the load power minus the renewable power). Thus, power requested from the batteries’ stack will be almost zero during operation of the FC hybrid power system based on RPF-control mode. If the FC hybrid power system operates with a variable load demand, then the lack or excess of power on the DC bus will be dynamically ensured by the hybrid battery/ultracapacitor energy storage system for a safe transition of the FC system under the RPF-control mode. The RPF-control mode will ensure a fair comparison of the seven control topologies based on the same optimization function to improve the fuel savings. The main objective of this paper is to compare the fuel economy obtained by using each strategy under different load cycles in order to identify which is the best strategy operating across entire loading or the best switching strategy using two strategies: one strategy for high load and the other on the rest of the load range. Based on the preliminary results, the fuel consumption using these best strategies can be reduced by more than 15%, compared to commercial strategies.


Author(s):  
Seyed Kourosh Mahjour ◽  
Antonio Alberto Souza Santos ◽  
Manuel Gomes Correia ◽  
Denis José Schiozer

AbstractThe simulation process under uncertainty needs numerous reservoir models that can be very time-consuming. Hence, selecting representative models (RMs) that show the uncertainty space of the full ensemble is required. In this work, we compare two scenario reduction techniques: (1) Distance-based Clustering with Simple Matching Coefficient (DCSMC) applied before the simulation process using reservoir static data, and (2) metaheuristic algorithm (RMFinder technique) applied after the simulation process using reservoir dynamic data. We use these two methods as samples to investigate the effect of static and dynamic data usage on the accuracy and rate of the scenario reduction process focusing field development purposes. In this work, a synthetic benchmark case named UNISIM-II-D considering the flow unit modelling is used. The results showed both scenario reduction methods are reliable in selecting the RMs from a specific production strategy. However, the obtained RMs from a defined strategy using the DCSMC method can be applied to other strategies preserving the representativeness of the models, while the role of the strategy types to select the RMs using the metaheuristic method is substantial so that each strategy has its own set of RMs. Due to the field development workflow in which the metaheuristic algorithm is used, the number of required flow simulation models and the computational time are greater than the workflow in which the DCSMC method is applied. Hence, it can be concluded that static reservoir data usage on the scenario reduction process can be more reliable during the field development phase.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2539
Author(s):  
Zhengjie Li ◽  
Zhisheng Zhang

At present, due to the errors of wind power, solar power and various types of load forecasting, the optimal scheduling results of the integrated energy system (IES) will be inaccurate, which will affect the economic and reliable operation of the integrated energy system. In order to solve this problem, a day-ahead and intra-day optimal scheduling model of integrated energy system considering forecasting uncertainty is proposed in this paper, which takes the minimum operation cost of the system as the target, and different processing strategies are adopted for the model. In the day-ahead time scale, according to day-ahead load forecasting, an integrated demand response (IDR) strategy is formulated to adjust the load curve, and an optimal scheduling scheme is obtained. In the intra-day time scale, the predicted value of wind power, solar power and load power are represented by fuzzy parameters to participate in the optimal scheduling of the system, and the output of units is adjusted based on the day-ahead scheduling scheme according to the day-ahead forecasting results. The simulation of specific examples shows that the integrated demand response can effectively adjust the load demand and improve the economy and reliability of the system operation. At the same time, the operation cost of the system is related to the reliability of the accurate prediction of wind power, solar power and load power. Through this model, the optimal scheduling scheme can be determined under an acceptable prediction accuracy and confidence level.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3843
Author(s):  
Sultan Sh. Alanzi ◽  
Rashad M. Kamel

This paper investigates the maximum photovoltaic (PV) penetration limits on both overhead lines and underground cables medium voltage radial distribution system. The maximum PV penetration limit is estimated considering both bus voltage limit (1.05 p.u.) and feeder current ampacity (1 p.u.). All factors affect the max PV penetration limit are investigated in detail. Substation voltage, load percentage, load power factor, and power system frequency (50 Hz or 60 Hz) are analyzed. The maximum PV penetration limit associated with overhead lines is usually higher than the value associated with the underground cables for high substation voltage (substation voltage = 1.05 and 1.04 p.u.). The maximum PV penetration limit decreases dramatically with low load percentage for both feeder types but still the overhead lines accept PV plant higher than the underground cables. Conversely, the maximum PV penetration increases with load power factor decreasing and the overhead lines capability for hosting PV plant remains higher than the capability of the underground cables. This paper proved that the capability of the 60-Hz power system for hosting the PV plant is higher than the capability of 50 Hz power system. MATLAB software has been employed to obtain all results in this paper. The Newton-Raphson iterative method was the used method to solve the power flow of the investigated systems.


2013 ◽  
Vol 684 ◽  
pp. 680-685 ◽  
Author(s):  
Md. Shahinur Islam ◽  
Tausif Ali ◽  
Ahsan Uddin Ahmed ◽  
Syed Ashraful Karim ◽  
Hossain Mursalin

World climate change challenges and the world’s consistent growing demand for energy during the past decade have brought the need to explore for more renewable energy resources. The continuation of exploring green energy sources results Osmotic Power- a new emission-free source of sustainable energy that can be used to generate electricity. Osmotic power plant is only feasible in places where rivers flow out to the ocean. The leading virtue of osmotic power is that it would be capable to produce a steady and reliable supply of renewable base load power as an alternative of other variable sources like solar or wind. There are some hurdles to generate osmotic power. Developing suitable membrane and initial construction cost are top on of them. Though Osmotic power is years from commercial feasibility but researchers think that it could provide thousands of terawatts of base load power per year around the globe. This paper presents an overview of osmotic power generation system with the analysis of potential benefits and limitations of it.


Sign in / Sign up

Export Citation Format

Share Document