optic flow information
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 15 ◽  
Author(s):  
Koji Matsuda ◽  
Fumi Kubo

Animals’ self-motion generates a drifting movement of the visual scene in the entire field of view called optic flow. Animals use the sensation of optic flow to estimate their own movements and accordingly adjust their body posture and position and stabilize the direction of gaze. In zebrafish and other vertebrates, optic flow typically drives the optokinetic response (OKR) and optomotor response (OMR). Recent functional imaging studies in larval zebrafish have identified the pretectum as a primary center for optic flow processing. In contrast to the view that the pretectum acts as a relay station of direction-selective retinal inputs, pretectal neurons respond to much more complex visual features relevant to behavior, such as spatially and temporally integrated optic flow information. Furthermore, optic flow signals, as well as motor signals, are represented in the cerebellum in a region-specific manner. Here we review recent findings on the circuit organization that underlies the optic flow processing driving OKR and OMR.


2021 ◽  
Author(s):  
Burcu A. Urgen ◽  
Guy A. Orban

AbstractAction observation is supported by a network of regions in occipito-temporal, parietal, and premotor cortex in primates. Recent research suggests that the parietal node has regions dedicated to different action classes including manipulation, interpersonal, skin-displacing, locomotion, and climbing. The goals of the current study consist of: 1) extending this work with new classes of actions that are communicative and specific to humans, 2) investigating how parietal cortex differs from the occipito-temporal and premotor cortex in representing action classes. Human subjects underwent fMRI scanning while observing three action classes: indirect communication, direct communication, and manipulation, plus two types of control stimuli, static controls which were static frames from the video clips, and dynamic controls consisting of temporally-scrambled optic flow information. Using univariate analysis, MVPA, and representational similarity analysis, our study presents several novel findings. First, we provide further evidence for the anatomical segregation in parietal cortex of different action classes: We have found a new region that is specific for representing human-specific indirect communicative actions in cytoarchitectonic parietal area PFt. Second, we found that the discriminability between action classes was higher in parietal cortex than the other two levels suggesting the coding of action identity information at this level. Finally, our results advocate the use of the control stimuli not just for univariate analysis of complex action videos but also when using multivariate techniques.


2015 ◽  
Vol 15 (6) ◽  
pp. 14
Author(s):  
Laurel Issen ◽  
Krystel R. Huxlin ◽  
David Knill

2014 ◽  
Vol 112 (4) ◽  
pp. 766-777 ◽  
Author(s):  
Li Li ◽  
Diederick C. Niehorster

Although previous studies have shown that people use both optic flow and target egocentric direction to walk or steer toward a goal, it remains in question how enriching the optic flow field affects the control of heading specified by optic flow and the control of target egocentric direction during goal-oriented locomotion. In the current study, we used a control-theoretic approach to separate the control response specific to these two cues in the visual control of steering toward a goal. The results showed that the addition of optic flow information (such as foreground motion and global flow) in the display improved the overall control precision, the amplitude, and the response delay of the control of heading. The amplitude and the response delay of the control of target egocentric direction were, however, not affected. The improvement in the control of heading with enriched optic flow displays was mirrored by an increase in the accuracy of heading perception. The findings provide direct support for the claim that people use the heading specified by optic flow as well as target egocentric direction to walk or steer toward a goal and suggest that the visual system does not internally weigh these two cues for goal-oriented locomotion control.


i-Perception ◽  
10.1068/ic270 ◽  
2011 ◽  
Vol 2 (4) ◽  
pp. 270-270
Author(s):  
Diederick C. Niehorster ◽  
William H. Warren ◽  
Li Li

2010 ◽  
Vol 104 (1) ◽  
pp. 239-247 ◽  
Author(s):  
James B. Maciokas ◽  
Kenneth H. Britten

Many studies have documented the involvement of medial superior temporal extrastriate area (MST) in the perception of heading based on optic flow information. Furthermore, both heading perception and the responses of MST neurons are relatively stable in the presence of eye movements that distort the retinal flow information on which perception is based. Area VIP in the posterior parietal cortex also contains a robust representation of optic flow cues for heading. However, the studies in the two areas were frequently conducted using different stimuli, making quantitative comparison difficult. To remedy this, we studied MST using a family of random dot heading stimuli that we have previously used in the study of VIP. These stimuli simulate observer translation through a three-dimensional cloud of points, and a range of forward headings was presented both with and without horizontal smooth pursuit eye movements. We found that MST neurons, like VIP neurons, respond robustly to these stimuli and partially compensate for the presence of pursuit. Quantitative comparison of the responses revealed no substantial difference between the heading responses of MST and VIP neurons or in their degree of pursuit tolerance.


Sign in / Sign up

Export Citation Format

Share Document