glacial denudation
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Yan Zhong ◽  
Qiao Liu ◽  
Matthew Westoby ◽  
Yong Nie ◽  
Francesca Pellicciotti ◽  
...  

Abstract. Topographic development via paraglacial slope failure (PSF) represents a complex interplay between geological structure, climate, and glacial denudation. Where debris generated by PSFs is deposited on the surface of a glacier, this debris can increase the extent or thickness of a supraglacial debris-cover, in turn modifying glacier ablation and affecting meltwater generation. To date, little attention has been paid to intensity and frequency of PSFs in glacierised, monsoon temperate regions of Southeast Tibet. We mapped PSFs along the 5 km-long, west-east trending ice tongue of Hailuogou Glacier (HLG), Mt. Gongga, using repeat satellite- and UAV-derived imagery between 1990 and 2020. Three types of PSF were identified: (A) rock fall, (B) sediment-mantled slopes slide and collapse, and (C) gully headwards erosion. We analyzed the formation, evolution and current state of these PSFs and discuss these aspects with relation to glacier dynamics and paraglacial geomorphological history. South-facing slopes (true left of HLG) showed more destabilization and higher PSF activity than north-facing slopes. We observed annual average rates of downslope sliding for type B PSFs of 1.6–2.6 ± 0.04 cm d−1, whereas the average upward denudation rate for type C PSFs was 0.7–3.39 cm d−1. We show that type A PSFs are non-ice-contact rock collapses that occur as a long-term paraglacial response following glacier downwasting and the exposure of steep rocky cliffs and which could also be influenced by precipitation, freeze-thaw cycling, earthquakes or other factors. In contrast, type B and C PSFs are a more immediate response to recent glacier downwasting. We further argue that the accelerating downwasting of glacier are used as a preparatory or triggering factor, which could directly or indirectly cause the PSFs.


2021 ◽  
Author(s):  
Yan Zhong ◽  
Qiao Liu ◽  
Yong Nie ◽  
Matthew Westoby ◽  
Bo Zhang ◽  
...  

<p>Topographic development via paraglacial slope failure (PSF) represents a complex interplay between geological structure, climate, and glacial denudation. Where debris generated by PSFs is deposited on the surface of a glacier, this debris can increase the extent or thickness of a supraglacial debris-cover, in turn modifying glacier ablation and affecting meltwater generation. To date, little attention has been paid to intensity and frequency of PSFs and their significance as a geomorphic agent and hazard in glacierised, monsoon temperate regions of Southeast Tibet. We mapped PSFs along the 5 km-long, west-east trending ice tongue of Hailuogou Glacier (HLG), Mt. Gongga, using repeat satellite- and UAV-derived imagery between 1990 and 2020. Three types of PSF were identified: (A) rock fall, (B) slide and collapse of sediment-mantled slopes, and (C) gulley headwards erosion. We analyzed the formation, evolution and current state of these PSFs and discuss these aspects with relation to glacier dynamics and paraglacial geomorphological history. South-facing slopes (true left of HLG) showed more destabilization and higher PSF activity than north-facing slopes. We observed annual average rates of downslope sliding for type B PSFs of 1.6-2.6 cm d<sup>-1</sup>, whereas the average upward denudation rate for type C PSFs was 0.7-3.39 cm d<sup>-1</sup>. We show that type A PSFs are non-ice-contact rock collapses that occur as a long-term paraglacial response following glacier downwasting and the exposure of steep rocky cliffs and which could also be influenced by precipitation, freeze-thaw cycling, earthquakes or other factors. In contrast, type B and C PSFs are a more immediate response to recent glacier downwasting. We further argue that the accelerating downwasting of glacier are used as a preparatory or triggering factor, which could directly or indirectly cause the PSFs.</p>


Geosciences ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 390
Author(s):  
Hallgeir Sirevaag ◽  
Anna Ksienzyk ◽  
Joachim Jacobs ◽  
István Dunkl ◽  
Andreas Läufer

The lack of preserved Mesozoic–Cenozoic sediments and structures in central Dronning Maud Land has so far limited our understanding of the post-Pan-African evolution of this important part of East Antarctica. In order to investigate the thermal evolution of the basement rocks and place constraints on landscape evolution, we present new low-temperature thermochronological data from 34 samples. Apatite fission track ages range from 280–85 Ma, while single-grain (U-Th)/He ages from apatite and zircon range from 305–15 and 420–340 Ma, respectively. Our preferred thermal history models suggest late Paleozoic–early Mesozoic peneplanation and subsequent burial by 3–6 km of Beacon sediments. The samples experienced no additional burial in the Jurassic, thus the once voluminous continental flood basalts of western Dronning Maud Land did not reach central Dronning Maud Land. Mesozoic–early Cenozoic cooling of the samples was slow. Contrary to western Dronning Maud Land, central Dronning Maud Land lacks a mid-Cretaceous cooling phase. We therefore suggest that the mid-Cretaceous cooling of western Dronning Maud Land should be attributed to the proximity to the collapse of the orogenic plateau at the Panthalassic margin of Gondwana. Cooling rates accelerated considerably with the onset of glaciation at 34 Ma, due to climate deterioration and glacial denudation of up to 2 km.


1996 ◽  
Vol 45 (2) ◽  
pp. 160-175 ◽  
Author(s):  
Richard N. Hiscott ◽  
Ali E. Aksu

AbstractThe continental slope in Orphan Basin, northeast of Newfoundland, is underlain by several seaward-thinning debris-flow wedges alternating with acoustically stratified, regionally extensive, mainly hemipelagic sediments. δ18O stratigraphy and volcanic ash layers in a 11.67-m core indicate that the uppermost debris-flow wedge formed during the last of several sea-level lowstands in isotopic stages 2–4. Similarly, seismic reflection correlation of dated levels at DSDP Site 111 with the Orphan Basin succession suggests that two deeper debris-flow wedges were deposited during oxygen isotopic stages 6 and 8. The oldest of the debris-flow deposits in at least three of the wedges formed well into the corresponding glacial cycle, after ice sheets had reached the edge of the continental shelf. Slower deposition by hemipelagic processes and ice rafting formed the acoustically stratified units, including Heinrich layers. The youngest three debris-flow wedges each have volumes of 1300–1650 km3. Approximately two-thirds of this material is attributed to glacial erosion of Mesozoic and Tertiary strata beneath the Northeast Newfoundland Shelf. The remainder is believed to have been derived by glacial erosion of older bedrock that now forms the island of Newfoundland. The observed sediment volumes and the inferred basal and upper ages of the debris-flow wedges imply an average glacial denudation rate of about 0.13 mm/yr for this older bedrock, and an average of about 60 m of glacial bedrock erosion since oxygen isotope stage 22. This denudation rate is similar to estimates from the Barents Sea region off Norway.


Sign in / Sign up

Export Citation Format

Share Document