orogenic plateau
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 2)

Geology ◽  
2021 ◽  
Author(s):  
Adam Brudner ◽  
Hehe Jiang ◽  
Xu Chu ◽  
Ming Tang

The Grenville Province on the eastern margin of Laurentia is a remnant of a Mesoproterozoic orogenic plateau that comprised the core of the ancient supercontinent Rodinia. As a protracted Himalayan-style orogen, its orogenic history is vital to understanding Mesoproterozoic tectonics and paleoenvironmental evolution. In this study, we compared two geochemical proxies for crustal thickness: whole-rock [La/Yb]N ratios of intermediate-to-felsic rocks and europium anomalies (Eu/Eu*) in detrital zircons. We compiled whole-rock geochemical data from 124 plutons in the Laurentian Grenville Province and collected trace-element and geochronological data from detrital zircons from the Ottawa and St. Lawrence River (Canada) watersheds. Both proxies showed several episodes of crustal thickening and thinning during Grenvillian orogenesis. The thickest crust developed in the Ottawan phase (~60 km at ca. 1080 Ma and ca. 1045 Ma), when the collision culminated, but it was still up to 20 km thinner than modern Tibet. We speculate that a hot crust and several episodes of crustal thinning prevented the Grenville hinterland from forming a high Tibet-like plateau, possibly due to enhanced asthenosphere-lithosphere interactions in response to a warm mantle beneath a long-lived supercontinent, Nuna-Rodinia.


Geology ◽  
2021 ◽  
Author(s):  
Ian W. Hillenbrand ◽  
Michael L. Williams

The Acadian and Neoacadian orogenies are widely recognized, yet poorly understood, tectono-thermal events in the New England Appalachian Mountains (USA). We quantified two phases of Paleozoic crustal thickening using geochemical proxies. Acadian (425–400 Ma) crustal thickening to 40 km progressed from southeast to northwest. Neoacadian (400–380 Ma) crustal thickening was widely distributed and varied by 30 km (40–70 km) from north to south. Doubly thickened crust and paleoelevations of 5 km or more support the presence of an orogenic plateau at ca. 380–330 Ma in southern New England. Neoacadian crustal thicknesses show a strong correlation with metamorphic isograds, where higher metamorphic grade corresponds to greater paleo-crustal thickness. We suggest that the present metamorphic field gradient was exposed through erosion and orogenic collapse influenced by thermal, isostatic, and gravitational properties related to Neoacadian crustal thickness. Geobarometry in southern New England underestimates crustal thickness and exhumation, suggesting the crust was thinned by tectonic as well as erosional processes.


2021 ◽  
Vol 560 ◽  
pp. 116797
Author(s):  
Ian W. Hillenbrand ◽  
Michael L. Williams ◽  
Cong Li ◽  
Haiying Gao
Keyword(s):  

2021 ◽  
Author(s):  
Ian Hillenbrand ◽  
Michael Williams ◽  
Cong Li ◽  
Haiying Gao ◽  
Michael Jercinovic

<p>High elevation orogenic plateaus are formed by a complex interplay of deep and surficial processes yet understanding of the deeper processes is limited by few recognized exposures of the lower levels of plateaus. We present evidence for the existence of an orogenic plateau during and after the Devonian Acadian orogeny (<em>sensu lato</em>), the mid-crustal roots of which are exposed in the New England Appalachians. The four-dimensional crustal evolution of this paleo-plateau is constrained by the integration of petrochronology, petrologic and geochronologic databases, and geophysical imaging. Doubly thickened crust, widespread amphibolite to granulite-facies metamorphic conditions, a paleo-isobaric surface, and protracted mid-crustal anatexis all indicate the presence of a high elevation (~5 km), low relief plateau by 380 Ma. <sup>40</sup>Ar/<sup>39</sup>Ar thermochronology shows a distinct signature with very slow cooling rates of 2-4<strong>°</strong>C/m.y. following peak metamorphic conditions. Thermochronologic data, trace element and Nd isotope geochemistry, and monazite and xenotime petrochronology suggest a 50 m.y. lifespan of the plateau (380-330 Ma). Orogen parallel ductile flow and extrusion of gneiss domes resulted in plateau collapse, crustal thinning, and block-like exhumation at ca. 330-300 Ma. Thinning of the plateau crust may have led to the sharp 12-15 km step in Moho depth in western New England, possibly by reactivating the suture between Laurentia and accreted Gondwanan-derived terranes. The formation of the Acadian altiplano may have influenced Li-pegmatite genesis and Paleozoic paleoclimate, while its recognition may provide a window into the deeper processes of orogenic plateaus including partial melting, plutonism, and collapse by ductile extension.</p>


2020 ◽  
Vol 793 ◽  
pp. 228592
Author(s):  
Yang Chu ◽  
Wei Lin ◽  
Michel Faure ◽  
Mark B. Allen ◽  
Zhentian Feng

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-24
Author(s):  
Andrew V. Zuza ◽  
Charles H. Thorman ◽  
Christopher D. Henry ◽  
Drew A. Levy ◽  
Seth Dee ◽  
...  

Abstract Mesozoic crustal shortening in the North American Cordillera’s hinterland was related to the construction of the Nevadaplano orogenic plateau. Petrologic and geochemical proxies in Cordilleran core complexes suggest substantial Late Cretaceous crustal thickening during plateau construction. In eastern Nevada, geobarometry from the Snake Range and Ruby Mountains-East Humboldt Range-Wood Hills-Pequop Mountains (REWP) core complexes suggests that the ~10–12 km thick Neoproterozoic-Triassic passive-margin sequence was buried to great depths (>30 km) during Mesozoic shortening and was later exhumed to the surface via high-magnitude Cenozoic extension. Deep regional burial is commonly reconciled with structural models involving cryptic thrust sheets, such as the hypothesized Windermere thrust in the REWP. We test the viability of deep thrust burial by examining the least-deformed part of the REWP in the Pequop Mountains. Observations include a compilation of new and published peak temperature estimates (n=60) spanning the Neoproterozoic-Triassic strata, documentation of critical field relationships that constrain deformation style and timing, and new 40Ar/39Ar ages. This evidence refutes models of deep regional thrust burial, including (1) recognition that most contractional structures in the Pequop Mountains formed in the Jurassic, not Cretaceous, and (2) peak temperature constraints and field relationships are inconsistent with deep burial. Jurassic deformation recorded here correlates with coeval structures spanning western Nevada to central Utah, which highlights that Middle-Late Jurassic shortening was significant in the Cordilleran hinterland. These observations challenge commonly held views for the Mesozoic-early Cenozoic evolution of the REWP and Cordilleran hinterland, including the timing of contractional strain, temporal evolution of plateau growth, and initial conditions for high-magnitude Cenozoic extension. The long-standing differences between peak-pressure estimates and field relationships in Nevadan core complexes may reflect tectonic overpressure.


2020 ◽  
Author(s):  
Christian Teyssier ◽  
Donna L Whitney ◽  
Patrice F Rey ◽  
Françoise Roger

<p>Mature orogenic plateaux grow in response to the lateral redistribution of plateau material, driven by gravitational potential energy, from the thick plateau crust toward the thinner foreland crust. Folding and thrusting in the shallow crust as well as flow of weak deep crust toward the foreland result in plateau growth. The balance between plateau growth processes, including gravitational collapse of the orogenic crust, and the resistance to plateau propagation controls the position of plateau margins. Toward the end of orogenic plateau development, plateau margins are the loci of steep topographic gradients, where erosional processes can be aggressive. The margins also represent the transition between thick crust and thin/weak lithosphere beneath the plateau, and thinner crust and strong/thick lithosphere below the foreland.</p><p>The juxtaposition of thick and thin lithosphere favors strain localization along plateau margins, where thick lithosphere may partially subduct, or where strike-slip systems, such as the Altyn Tagh region of northern Tibet, develop. In either case, it is likely that the deep, flowing, partially molten crust will sample and entrain high-P (HP) metamorphic rocks such as granulite and eclogite. In the case of lithospheric strike-slip systems, crustal thickening in transpressional domains may lead to HP metamorphism, and crustal thinning in transtensional domains may lead to rapid exhumation of the deep crust, particularly where pull-apart structures in the shallow-crust allow the upward flow and emplacement of migmatite domes. For example, the Montagne Noire dome (French Massif Central) formed at the southern margin of the Variscan orogen in the late Carboniferous (315-295 Ma). This dome is filled with Variscan migmatite containing eclogite fragments that were sampled near Moho depths and entrained in the flowing partially molten crust; eclogitization and early crystallization of melt were coeval. In this example, the redistribution of mass and heat across the plateau margin, including the exhumation of near-Moho rocks, stabilized the crust and marked the end of orogeny.</p>


2020 ◽  
Author(s):  
Jonas Vanardois ◽  
Pierre Trap ◽  
Françoise Roger ◽  
Fabrice Barou ◽  
Pierre Lanari ◽  
...  

<p>                The Aiguilles-Rouge Massif (ARM) is one of the Western External Crystallin Massifs (ECM) of the French Alps. Similarly to the other ECMs, the ARM exposes a Variscan basement made of migmatitic ortho- and paragneisses and micaschists that hold metric boudins of retrograded eclogites, amphibolites and serpentinites. Upward, low-grade and weakly metamorphosed Late-Carboniferous terrigenous sediments overly the Variscan basement. Deformation and metamorphism occurred between 330 and 300 Ma. The whole ARM is structured by a main N-S to NE-SW trending and vertical foliation formed in response to a regional dextral transpression. The tectonic significance of the ARM’s high-pressure rocks in the Variscan belt realm as relics of a subduction zone, pieces of crustal root of an orogenic plateau or overpressure phenomenon along a high-strain zone is still highly debated. A question that also remains is how eclogite Pressure–Temperature–time-Deformation history (P–T–t-D path) relates to the metamorphic paths recorded in the surrounding migmatitic rocks. In this contribution we present new structural and microstructural (EBSD data) observations that give us a detailed vision of the partitioning of the crustal scale deformation during Late-Variscan time. Three main deformations, named D1, D2 and D3, have been recognized in the gneissic core of the ARM. D1 is relictual and corresponds to a flat-lying S1 foliation that is only visible in the high grade metasedimentary rocks and preserved in low-D2 strain domains. D1 is associated with a partial melting metamorphic event M1. D2 is characterized by three main orientations of planar fabrics that are oriented in directions N160, N0 and N20. These planar fabrics are interpreted as S2-C2-C2’ related to anastomosed system developed under a bulk dextral transpression. D2 shearing becomes more penetrative toward the NE, where it is associated to local partial melting. D3 corresponds to the development of a flat-lying S3 cleavage together with the folding of vertical D2 foliations. The D3 is linked to a regional vertical shortening, associated to few liquid injections. These partial melting conditions occurring during D1, D2 and D3 deformations may unravel a continuum of these three deformations during a short period of time. Processing of new thermobarometric and LA-ICP-MS U-Pb geochronological data on eclogites, surrounding rocks and migmatites are currently in progress. The new obtained results will be presented in addition to the structural and metamorphic data in order to discuss the P-T-t-D path of the deeply buried metasedimentary rocks, migmatites and preserved eclogites.</p>


2020 ◽  
Vol 221 (3) ◽  
pp. 1971-1983
Author(s):  
Lin Chen ◽  
Lijun Liu ◽  
Fabio A Capitanio ◽  
Taras V Gerya ◽  
Yang Li

SUMMARY The Tibetan crust is sliced by several east–west trending suture zones. The role of these suture zones in the evolution of the Himalayan range and Tibetan plateau remains unclear. Here we use 3-D thermomechanical simulations to investigate the role of pre-existing weak zones within the Asian Plate in the formation of orogen and plateau growth during continental collision. Our results show that partitioning of deformation along the convergent margin leads to scraping off of crustal material into an orogenic wedge above the margin and crustal thickening in the retro-continent, eventually forming a large orogenic plateau in front of the indenter. Pre-existing weak zone(s) within the retro-continent is reactivated at the early stage of convergence, and facilitates the northward propagation of strain and widening of the orogenic plateau. The northernmost weak zone sets the northern limit of the Tibetan plateau. Our models also show rheological weakening of the congested buoyant crust within the collisional zone drives wedge-type exhumation of deeply buried crust at the southern flank of the plateau, which may explain the formation of the Greater Himalayan Sequence.


2020 ◽  
Vol 191 ◽  
pp. 15 ◽  
Author(s):  
Jonas Vanardois ◽  
Pierre Trap ◽  
Philippe Goncalves ◽  
Didier Marquer ◽  
Josselin Gremmel ◽  
...  

In order to constrain the finite deformation pattern of the Variscan basement of the Agly massif, a detailed structural analysis over the whole Agly massif was performed. Our investigation combined geological mapping, reappraisal of published and unpublished data completed with our own structural work. Results are provided in the form of new tectonic maps and series of regional cross-sections through the Agly massif. At variance from previous studies, we identified three deformation fabrics named D1, D2 and D3. The D1 deformation is only relictual and characterized by a broadly northwest-southeast striking and eastward dipping foliation without any clear mineral and stretching lineation direction. D1 might be attributed to thickening of the Variscan crust in a possible orogenic plateau edge position. The D2 deformation is a heterogeneous non-coaxial deformation, affecting the whole massif, that produced a shallowly dipping S2 foliation, and an anastomosed network of C2 shear zones that accommodated vertical thinning and N20 directed extension. D2 is coeval with LP-HT metamorphism and plutonism at ca. 315–295 Ma. D2 corresponds to the extensional collapse of the partially molten orogenic crust in a global dextral strike-slip at the scale of the whole Variscan belt. The D2 fabrics are folded and steepened along a D3 east-west trending corridor, called Tournefort Deformation Zone (TDZ), where the Saint-Arnac and Tournefort intrusives and surrounding rocks share the same NE-SW to E-W subvertical S3 foliation. Along the D3 corridor, the asymmetrical schistosity pattern and kinematic criteria suggest a D3 dextral kinematics. The D3 deformation is a record of E-W striking dextral shearing that facilitated and localized the ascent and emplacement of the diorite and granitic sheet-shaped plutons. D3 outlasted D2 and turned compressional-dominated in response to the closure of the Ibero-Armorican arc in a transpressional regime. The progressive switch from D2 thinning to D3 transpression is attributed to the lessening of gravitational forces at an advanced stage of extensional collapse that became overcome by ongoing compressional tectonic forces at the southern edge of the Variscan orogenic plateau.


Sign in / Sign up

Export Citation Format

Share Document