random element
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 2103 (1) ◽  
pp. 012147
Author(s):  
Yu V Davydov ◽  
E M Roginskii ◽  
Yu E Kitaev ◽  
A N Smirnov ◽  
I A Eliseyev ◽  
...  

Abstract The results of joint theoretical and experimental studies aimed at revealing features in the Raman spectra, which can be used for evaluation of the interface quality between GaN and AlN layers in short-period GaN/AlN superlattices (SLs) are presented. The Raman spectra for SLs with sharp interface and with different degree of interface diffusion are simulated by ab initio calculations and within the framework of random-element isodisplacement model, respectively. The comparison of the results of theoretical calculations and experimental data obtained on PA MBE and MOVPE grown SLs, leads to conclusion that the spectral region of the A1(LO) confined phonons is very sensitive to the degree of interface sharpness. As a result of comprehensive studies, the correlations between the parameters of the A1(LO) confined phonons and the structure of SLs are obtained. The results of the complex studies can be used to optimize the parameters of the growth process in order to form structurally perfect short-period GaN/AlN SLs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2396
Author(s):  
Valery Davydov ◽  
Evgenii M. Roginskii ◽  
Yuri Kitaev ◽  
Alexander Smirnov ◽  
Ilya Eliseyev ◽  
...  

We present an extensive theoretical and experimental study to identify the effect on the Raman spectrum due to interface interdiffusion between GaN and AlN layers in short-period GaN/AlN superlattices (SLs). The Raman spectra for SLs with sharp interfaces and with different degree of interface diffusion are simulated by ab initio calculations and within the framework of the random-element isodisplacement model. The comparison of the results of theoretical calculations and experimental data obtained on PA MBE and MOVPE grown SLs, showed that the bands related to A1(LO) confined phonons are very sensitive to the degree of interface diffusion. As a result, a correlation between the Raman spectra in the range of A1(LO) confined phonons and the interface quality in SLs is obtained. This opens up new possibilities for the analysis of the structural characteristics of short-period GaN/AlN SLs using Raman spectroscopy.


Author(s):  
Carlos Zequeira Sánchez ◽  
Evaristo José Madarro Capó ◽  
Guillermo Sosa-Gómez

In various scenarios today, the generation of random permutations has become an indispensable tool. Since random permutation of dimension [Formula: see text] is a random element of the symmetric group [Formula: see text], it is necessary to have algorithms capable of generating any permutation. This work demonstrates that it is possible to generate the symmetric group [Formula: see text] by shifting the components of a particular matrix representation of each permutation.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jocelyn Kuhn ◽  
Radley Christopher Sheldrick ◽  
Sarabeth Broder-Fingert ◽  
Andrea Chu ◽  
Lisa Fortuna ◽  
...  

Abstract Background The Multiphase Optimization Strategy (MOST) is designed to maximize the impact of clinical healthcare interventions, which are typically multicomponent and increasingly complex. MOST often relies on factorial experiments to identify which components of an intervention are most effective, efficient, and scalable. When assigning participants to conditions in factorial experiments, researchers must be careful to select the assignment procedure that will result in balanced sample sizes and equivalence of covariates across conditions while maintaining unpredictability. Methods In the context of a MOST optimization trial with a 2x2x2x2 factorial design, we used computer simulation to empirically test five subject allocation procedures: simple randomization, stratified randomization with permuted blocks, maximum tolerated imbalance (MTI), minimal sufficient balance (MSB), and minimization. We compared these methods across the 16 study cells with respect to sample size balance, equivalence on key covariates, and unpredictability. Leveraging an existing dataset to compare these procedures, we conducted 250 computerized simulations using bootstrap samples of 304 participants. Results Simple randomization, the most unpredictable procedure, generated poor sample balance and equivalence of covariates across the 16 study cells. Stratified randomization with permuted blocks performed well on stratified variables but resulted in poor equivalence on other covariates and poor balance. MTI, MSB, and minimization had higher complexity and cost. MTI resulted in balance close to pre-specified thresholds and a higher degree of unpredictability, but poor equivalence of covariates. MSB had 19.7% deterministic allocations, poor sample balance and improved equivalence on only a few covariates. Minimization was most successful in achieving balanced sample sizes and equivalence across a large number of covariates, but resulted in 34% deterministic allocations. Small differences in proportion of correct guesses were found across the procedures. Conclusions Based on the computer simulation results and priorities within the study context, minimization with a random element was selected for the planned research study. Minimization with a random element, as well as computer simulation to make an informed randomization procedure choice, are utilized infrequently in randomized experiments but represent important technical advances that researchers implementing multi-arm and factorial studies should consider.


2019 ◽  
Author(s):  
Jocelyn Lara Kuhn ◽  
Radley Christopher Sheldrick ◽  
Sarabeth Broder-Fingert ◽  
Andrea Chu ◽  
Lisa Fortuna ◽  
...  

Abstract Background: The Multiphase Optimization Strategy (MOST) is designed to maximize the impact of clinical healthcare interventions, which are typically multicomponent and increasingly complex. MOST often relies on factorial experiments to identify which components of an intervention are most effective, efficient, and scalable. When assigning participants to conditions in factorial experiments, researchers must be careful to select the assignment procedure that will result in balanced sample sizes and equivalence of covariates across conditions while maintaining unpredictability. Methods: In the context of a MOST optimization trial with a 2x2x2x2 factorial design, we used computer simulation to empirically test five subject allocation procedures: simple randomization, stratified randomization with permuted blocks, maximum tolerated imbalance (MTI), minimal sufficient balance (MSB), and minimization. We compared these methods across the 16 study cells with respect to sample size balance, equivalence on key covariates, and unpredictability. Leveraging an existing dataset to compare these procedures, we conducted 250 computerized simulations using bootstrap samples of 304 participants. Results: Simple randomization, the most unpredictable procedure, generated poor sample balance and equivalence of covariates across the 16 study cells. Stratified randomization with permuted blocks performed well on stratified variables but resulted in poor equivalence on other covariates and poor balance. MTI, MSB, and minimization had higher complexity and cost. MTI resulted in balance close to pre-specified thresholds and a higher degree of unpredictability, but poor equivalence of covariates. MSB had 19.7% deterministic allocations, poor sample balance and improved equivalence on only a few covariates. Minimization was most successful in achieving balanced sample sizes and equivalence across a large number of covariates, but resulted in 34% deterministic allocations. Small differences in proportion of correct guesses were found across the procedures. Conclusions: Based on the computer simulation results and priorities within the study context, minimization with a random element was selected for the planned research study. Minimization with a random element, as well as computer simulation to make an informed randomization procedure choice, are utilized infrequently in randomized experiments but represent important technical advances that researchers implementing multi-arm and factorial studies should consider.


2019 ◽  
Author(s):  
Jocelyn Lara Kuhn ◽  
Radley Christopher Sheldrick ◽  
Sarabeth Broder-Fingert ◽  
Andrea Chu ◽  
Lisa Fortuna ◽  
...  

Abstract Background: The Multiphase Optimization Strategy (MOST) is designed to maximize the impact of clinical healthcare interventions, which are typically multicomponent and increasingly complex. MOST often relies on factorial experiments to identify which components of an intervention are most effective, efficient, and scalable. When assigning participants to conditions in factorial experiments, researchers must be careful to select the assignment procedure that will result in balanced sample sizes and equivalence of covariates across conditions while maintaining unpredictability. Methods: In the context of a MOST optimization trial with a 2x2x2x2 factorial design, we used computer simulation to empirically test five subject allocation procedures: simple randomization, stratified randomization with permuted blocks, maximum tolerated imbalance (MTI), minimal sufficient balance (MSB), and minimization. We compared these methods across the 16 study cells with respect to sample size balance, equivalence on key covariates, and unpredictability. Leveraging an existing dataset to compare these procedures, we conducted 250 computerized simulations using bootstrap samples of 304 participants. Results: Simple randomization, the most unpredictable procedure, generated poor sample balance and equivalence of covariates across the 16 study cells. Stratified randomization with permuted blocks performed well on stratified variables but resulted in poor equivalence on other covariates and poor balance. MTI, MSB, and minimization had higher complexity and cost. MTI resulted in balance close to pre-specified thresholds and a higher degree of unpredictability, but poor equivalence of covariates. MSB had 19.7% deterministic allocations, poor sample balance and improved equivalence on only a few covariates. Minimization was most successful in achieving balanced sample sizes and equivalence across a large number of covariates, but resulted in 34% deterministic allocations. Small differences in proportion of correct guesses were found across the procedures. Conclusions: Computer simulation was highly useful for evaluating tradeoffs among randomization procedures. Based on the computer simulation results and priorities within the study context, minimization with a random element was selected for the planned research study. Minimization with a random element, as well as computer simulation to make an informed randomization procedure choice, are utilized infrequently in randomized experiments but represent important technical advances that researchers implementing multi-arm and factorial studies should consider.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (2) ◽  
pp. 271-282
Author(s):  
S. Alrehaili ◽  
Charef Beddani

The commutativity degree is the probability that a pair of elements chosen randomly from a group commute. The concept of  commutativity degree has been widely discussed by several authors in many directions.  One of the important generalizations of commutativity degree is the probability that a random element from a finite group G fixes a random element from a non-empty set S that we call the action degree of groups. In this research, the concept of action degree is further studied where some inequalities and bounds on the action degree of finite groups are determined.  Moreover, a general relation between the action degree of a finite group G and a subgroup H is provided. Next, the action degree for the direct product of two finite groups is determined. Previously, the action degree was only defined for finite groups, the action degree for finitely generated groups will be defined in this research and some bounds on them are going to be determined.


Sign in / Sign up

Export Citation Format

Share Document