helicopter transmission
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 13)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yanzhong Wang ◽  
Kai Yang ◽  
Wen Tang

Purpose This paper aims to establish a prediction model of stable transmission time of spiral bevel gear during a loss-of-lubrication event in helicopter transmission system. Design/methodology/approach To observe the temperature change of spiral bevel gear during working condition, a test rig of spiral bevel gear was developed according to the requirements of experiments and carried out verification experiments. Findings The prediction is verified by the test of detecting the temperature of oil pool. The main damage form of helicopter spiral bevel gears under starved lubrication is tooth surface burn. The stable running time under oil-free lubrication is mainly determined by the degree of tooth surface burn control. Originality/value The experimental data of the spiral bevel gear oil-free lubrication process are basically consistent with the simulation prediction results. The results lay a foundation for the working life design of spiral bevel gear in helicopter transmission system under starved lubrication.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Li Xuejun ◽  
Jiang Lingli ◽  
Hua Dengrong ◽  
Yin Daoxuan ◽  
Yang Dalian

The complex three-shaft three-reducer structural designs of helicopter transmission systems are prone to changes in the relative positions of shafting under the conditions of main rotor and tail rotor loads. These changes will affect the transmission characteristics of the entire transmission system. In this study, the planetary gear trains of helicopters were examined. Due to the fact that these structures are considered to be the most representative structures of the main reducers of helicopters, they were selected as the study objects for the purpose of examining the meshing characteristics of planetary gear trains when the relative positions of the shafting changed due to the position changes of the main rotor shafts under variable load conditions. It was found that by embedding the comprehensive time-varying meshing stiffness values of the main rotor shafts at different positions, a dynamic model of the relative position changes of the planetary gear trains could be established. Then, combined with the multibody dynamics software, the meshing characteristics of the sun gears, and the planetary gears, the planetary gears and the inner ring gears were simulated and analyzed under different inclinations and offsets of the shafting. The results obtained in this study revealed the following: (1) the average meshing force of the gears increased with the increases in the angle inclinations, and the meshing force between the sun gears and the planetary gears increased faster than the meshing force between the planetary gears and the inner ring gears. It was observed that during the changes in the shafting tilt positions, obvious side frequency signals had appeared around the peak of the meshing frequency in the spectrum. Then, with the continuous increases in the tilt position, the peak was gradually submerged; (2) the average meshing force of the gears increased with the increases in the offset, and the increasing trend of the meshing force between the sun gears and the planetary gears was similar to that observed between the planetary gears and the inner ring gears. It was found that when the shafting offset position changed, there were obvious first and second frequency doubling in the spectrum; (3) the mass center orbit radii of the sun gears increased with the increases in the shafting position changes, and the changes in the angular tilt position were found to have greater influencing effects on the mass center orbit radii of the sun gears than the changes in the offset positions. This study’s research findings will provide a theoretical basis for future operational status monitoring of the main transmission systems of helicopters and are of major significance for improvements in the operational stability of helicopter transmission systems, which will potentially ensure safe and efficient operations.


2020 ◽  
Vol 20 (15) ◽  
pp. 8364-8373 ◽  
Author(s):  
Tianfu Li ◽  
Zhibin Zhao ◽  
Chuang Sun ◽  
Ruqiang Yan ◽  
Xuefeng Chen

2020 ◽  
Vol 63 (1) ◽  
pp. 7-13
Author(s):  
V. I. Kolesnikov ◽  
P. A. Koropets ◽  
E. S. Sinyutin

2020 ◽  
Vol 306 ◽  
pp. 05004
Author(s):  
Wang Haiwei ◽  
Li Lulu ◽  
Yuan Sheng

Research and application of rapid assembly technology can widely improve the design efficiency of helicopter transmissions. An assembly model of helicopter transmissions is presented by introducing Geometric Constraint Graph (GCG) method. A hierarchical model is obtained by multi-shrink decomposition. A corresponding data structure is generated according to the hierarchical model. CATIA based a parametric component database is built up. The Assembly modelling software is implemented by using VB. Finally, a helicopter transmissions example is taken as application and the rapid assembly for helicopter transmission system is achieved.


Sign in / Sign up

Export Citation Format

Share Document