Prediction and test of stable transmission time of spiral bevel gear during a loss-of-lubrication event in helicopter transmission system

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yanzhong Wang ◽  
Kai Yang ◽  
Wen Tang

Purpose This paper aims to establish a prediction model of stable transmission time of spiral bevel gear during a loss-of-lubrication event in helicopter transmission system. Design/methodology/approach To observe the temperature change of spiral bevel gear during working condition, a test rig of spiral bevel gear was developed according to the requirements of experiments and carried out verification experiments. Findings The prediction is verified by the test of detecting the temperature of oil pool. The main damage form of helicopter spiral bevel gears under starved lubrication is tooth surface burn. The stable running time under oil-free lubrication is mainly determined by the degree of tooth surface burn control. Originality/value The experimental data of the spiral bevel gear oil-free lubrication process are basically consistent with the simulation prediction results. The results lay a foundation for the working life design of spiral bevel gear in helicopter transmission system under starved lubrication.

Author(s):  
Kaihong Zhou ◽  
Jinyuan Tang ◽  
Tao Zeng

New geometry of generating spiral bevel gear is proposed. The key idea of the new proposed geometry is that the gear tooth surface geometry can be investigated in a developed curved surface based on the planar engagement principle. It is proved that the profile curve on the back of generating cone surface is a conical involute curve. The equations of generated gear tooth surface are achieved by the conical involute curve sweeping along the tooth trace of gear. The obtained equations are explicit and independent of the machine-tool settings. This differs from previous studies. The developed theory is illustrated with numerical examples to compare with the previous method, the comparison approves that the method is possible in this way. The new method indicates that there are new solutions to the design the production of spiral bevel gear.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401879065 ◽  
Author(s):  
Shuai Mo ◽  
Shengping Zhu ◽  
Guoguang Jin ◽  
Jiabei Gong ◽  
Zhanyong Feng ◽  
...  

High-speed heavy-load spiral bevel gears put forward high requirement for flexural strength; shot peening is a technique that greatly improves the bending fatigue strength of gears. During shot peening, a large number of fine pellets bombard the surface of the metal target material at very high speeds and let the target material undergo plastic deformation, at the same time strengthening layer is produced. Spiral bevel gear as the object of being bombarded inevitably brought the tooth surface micro-morphology changes. In this article, we aim to reveal the effect of microtopography of tooth shot peening on gear lubrication in spiral bevel gear, try to establish a reasonable description of the microscopic morphology for tooth surface by shot peening, to reveal the lubrication characteristics of spiral bevel gears after shot peening treatment based on the lubrication theory, and do comparative research on the surface lubrication characteristics of a variety of microstructures.


Author(s):  
Zhen Chen ◽  
Ming Zeng

In this paper, an active design method of meshing line for a spiral bevel gear mechanism with nonrelative sliding is presented. First, the general meshing line equations for a nonrelative sliding transmission mechanism between two orthogonal axes are proposed based on the active design parameters. Then, parametric equations for contact curves on the drive and driven spiral bevel gears are deduced by coordinate transformation of the meshing line equations. Further to this, parametric equations for the tooth surface of each bevel gear are derived according to the conical spiral motion of a generatrix circle along the calculated contact curves. Finally, a set of numerical examples is presented based on two types of motion equation of the meshing points. Material prototypes are fabricated and experimentally tested to validate the kinematic performance of the functionally designed spiral bevel gear set.


2010 ◽  
Vol 129-131 ◽  
pp. 235-240 ◽  
Author(s):  
Qiang Li ◽  
Zi Liang Wei ◽  
Hong Bo Yan ◽  
Hai Yan Hu

For a new type of bevel gear—logarithmic spiral bevel gear, establish its tooth direction curves and the mathematical model of tooth surface equation. With CAD software platform which can intuitive understanding of complex curves and combined with conical logarithmic spiral parameter equation build the logarithmic spiral on cone surface. Then array logarithmic spiral to make them evenly distributed in the cone surface, without any interference and to meet the strength distribution on both ends of circular truncated cone equally. Use two logarithmic spirals from different starpoint as tooth direction curves of lift and right tooth surface. Finally, use space geometric knowledge to build tooth surface equation by tooth direction curves and tooth profile curves.


Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Abstract Kinematical optimization and sensitivity analysis of circular-cut spiral bevel gears are investigated in this paper. Based on the Gleason spiral bevel gear generator and EPG test machine, a mathematical model is proposed to simulate the tooth contact conditions of the spiral bevel gear set. All the machine settings and assembly data are simulated by simplified parameters. The tooth contact patterns and kinematic errors are obtained by the proposed mathematical model and the tooth contact analysis techniques. Loaded tooth contact patterns are obtained by the differential geometry and the Hertz contact formulas. Tooth surface sensitivity due to the variation of machine settings is studied. The corrective machine settings can be calculated by the sensitive matrix and the linear regression method. An optimization algorithm is also developed to minimize the kinematic errors and the discontinuity of tooth meshing. According to the proposed studies, an improved procedure for development of spiral bevel gears is suggested. The results of this paper can be applied to determine the sensitivity and precision requirements in manufacturing, and improve the running quality of the spiral bevel gears. Two examples are presented to demonstrate the applications of the optimization model.


1992 ◽  
Vol 114 (2) ◽  
pp. 317-325 ◽  
Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Undercutting is a serious problem in designing spiral bevel gears with small numbers of teeth. Conditions of undercutting for spiral bevel gears vary with the manufacturing methods. Based on the theory of gearing [1], the tooth geometry of the Gleason type circular-cut spiral bevel gear is mathematically modeled. The sufficient and necessary conditions for the existence and regularity of the generated gear tooth surfaces are investigated. The conditions of undercutting for a circular-cut spiral bevel gear are defined by the sufficient conditions of the regular gear tooth surface. The derived undercutting equations can be applicable for checking the undercutting conditions of spiral bevel gears manufactured by the Gleason Duplex Method, Helical Duplex Method, Fixed Setting Method, and Modified Roll Method. An example is included to illustrate the application of the proposed undercut checking equations.


2007 ◽  
Vol 339 ◽  
pp. 158-162 ◽  
Author(s):  
Wei Min Pan ◽  
Ji Shun Li ◽  
Y. Lei

Precision measuring techniques have been developed interdependently with the techniques of design and manufacturing in the history. Computer aided inspection plays a very important role in modern manufacturing industry. On account of the CMM (Coordinates Measurement Machine) being applied widely and the precision model inspection concept coming true, it is possible to implement the digital inspection of the spiral bevel gear on the CMM. In this paper the framework of the spiral bevel gear digital inspection based on the integration of CAD/CAM/CMM is put forward. The key techniques of the scheme are investigated, which consist of exact modeling of spiral bevel gear based on manufacturing process, datum matching of CAD model and CMM inspection, CMM Inspection path planning, reconstruction of the tooth surface based on the CMM inspection results, Analysis of the deviation between the real gear tooth and CAD model, adjusting strategy of machining parameters.


2021 ◽  
Vol 22 ◽  
pp. 33
Author(s):  
Longlong Geng ◽  
Xiaozhong Deng ◽  
Hua Zhang ◽  
Shaowu Nie ◽  
Chuang Jiang

In this paper, a double-side milling method on spiral bevel gear is proposed. First, according to the tooth taper processed by double-side milling method, the influence of dedendum angle on the tooth taper was researched. Taking cut parameters into comprehensive consideration, the geometric parameters were designed through the inclination of root line and modified mean point in which machine setting parameters calculated was selected. Only the modified mean point met the meshing equation, and the error of pressure angle would increase as far away from the modified mean point in tooth line. The error would lead to bias in contact. A helical correction motion was introduced and the influence of helical motion coefficient on tooth surface topology was studied. Based on the meshing performance, a suitable coefficient was calculated. Finally, an example was illustrated. The experimental results were consistent with the theoretical analysis. The validity of the proposed method is verified.


Sign in / Sign up

Export Citation Format

Share Document