variable evolutionary rates
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 22 (11) ◽  
pp. 5586
Author(s):  
Deqiang Ai ◽  
Lingfei Peng ◽  
Daozheng Qin ◽  
Yalin Zhang

Although sequences of mitogenomes have been widely used for investigating phylogenetic relationship, population genetics, and biogeography in many members of Fulgoroidea, only one complete mitogenome of a member of Flatidae has been sequenced. Here, the complete mitogenomes of Cerynia lineola, Cromna sinensis, and Zecheuna tonkinensis are sequenced. The gene arrangements of the three new mitogenomes are consistent with ancestral insect mitogenomes. The strategy of using mitogenomes in phylogenetics remains in dispute due to the heterogeneity in base composition and the possible variation in evolutionary rates. In this study, we found compositional heterogeneity and variable evolutionary rates among planthopper mitogenomes. Phylogenetic analysis based on site-homogeneous models showed that the families (Delphacidae and Derbidae) with high values of Ka/Ks and A + T content tended to fall together at a basal position on the trees. Using a site-heterogeneous mixture CAT + GTR model implemented in PhyloBayes yielded almost the same topology. Our results recovered the monophyly of Fulgoroidea. In this study, we apply the heterogeneous mixture model to the planthoppers' phylogenetic analysis for the first time. Our study is based on a large sample and provides a methodological reference for future phylogenetic studies of Fulgoroidea.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathalie Feiner ◽  
Illiam S. C. Jackson ◽  
Edward L. Stanley ◽  
Tobias Uller

AbstractAnolis lizards originated in continental America but have colonized the Greater Antillean islands and recolonized the mainland, resulting in three major groups (Primary and Secondary Mainland and Greater Antillean). The adaptive radiation in the Greater Antilles has famously resulted in the repeated evolution of ecomorphs. Yet, it remains poorly understood to what extent this island radiation differs from diversification on the mainland. Here, we demonstrate that the evolutionary modularity between girdles and limbs is fundamentally different in the Greater Antillean and Primary Mainland Anolis. This is consistent with ecological opportunities on islands driving the adaptive radiation along distinct evolutionary trajectories. However, Greater Antillean Anolis share evolutionary modularity with the group that recolonized the mainland, demonstrating a persistent phylogenetic inertia. A comparison of these two groups support an increased morphological diversity and faster and more variable evolutionary rates on islands. These macroevolutionary trends of the locomotor skeleton in Anolis illustrate that ecological opportunities on islands can have lasting effects on morphological diversification.


2019 ◽  
Author(s):  
Bernardo Gutierrez ◽  
Emma Wise ◽  
Steven Pullan ◽  
Christopher Logue ◽  
Thomas A. Bowden ◽  
...  

AbstractThe Amazon basin is host to numerous arthropod-borne viral pathogens that cause febrile disease in humans. Among these,Oropouche orthobunyavirus(OROV) is a relatively understudied member of the Peribunyavirales that causes periodic outbreaks in human populations in Brazil and other South American countries. Although several studies have described the genetic diversity of the virus, the evolutionary processes that shape the viral genome remain poorly understood. Here we present a comprehensive study of the genomic dynamics of OROV that encompasses phylogenetic analysis, evolutionary rate estimates, inference of natural selective pressures, recombination and reassortment, and structural analysis of OROV variants. Our study includes all available published sequences, as well as a set of new OROV genomes sequences obtained from patients in Ecuador, representing the first set of viral genomes from this country. Our results show that differing evolutionary processes on the three segments that encompass the viral genome lead to variable evolutionary rates and TMRCAs that could be explained by cryptic reassortment. We also present the discovery of previously unobserved putative N-linked glycosylation sites, and codons which evolve under positive selection on the viral surface proteins, and discuss the potential role of these features in the evolution of the virus through a combined phylogenetic and structural approach.


Nematology ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 533-546 ◽  
Author(s):  
Dana K. Howe ◽  
McKinley Smith ◽  
Danielle M. Tom ◽  
Amanda M.V. Brown ◽  
Amy B. Peetz ◽  
...  

Summary Bacterial symbioses play important roles in shaping diverse biological processes in nematodes, and serve as targets in nematode biocontrol strategies. Focusing on the Xiphinema americanum species complex, we expanded upon recent research investigating patterns of coevolution between Xiphinema spp. and Xiphinematobacter spp., utilising two symbiont genetic markers of varying evolutionary rates. Phylogenetic analysis of nematode mitochondrial DNA (mtDNA) revealed five strongly supported major clades. Analysis of slow-evolving 16S rDNA in bacterial symbionts resulted in a phylogenetic topology composed of four major clades that grouped taxa highly congruent with the nematode mtDNA topology. A faster evolving protein-coding symbiont gene (nad) provided more phylogenetic resolution with seven well-supported clades, also congruent with the nematode mtDNA tree topology. Our results reinforce recent studies suggesting extensive coevolution between Xiphinema spp. and their vertically transmitted endosymbionts Xiphinematobacter spp. and illustrate the advantages of including genetic markers of varying evolutionary rates in coevolutionary and phylogenetic studies.


2017 ◽  
Author(s):  
Koichiro Tamura ◽  
Qiqing Tao ◽  
Sudhir Kumar

AbstractRelTime estimates divergence times by relaxing the assumption of a strict molecular clock in a phylogeny. It showed excellent performance in estimating divergence times for both simulated and empirical molecular sequence datasets in which evolutionary rates varied extensively throughout the tree. RelTime is computationally efficient and scales well with increasing size of datasets. Until now, however, RelTime has not had a formal mathematical foundation. Here, we show that the basis of the RelTime approach is a relative rate framework (RRF) that combines comparisons of evolutionary rates in sister lineages with the principle of minimum rate change between an evolutionary lineage and its descendants. We present analytical solutions for estimating relative lineage rates and divergence times under RRF. We also discuss the relationship of RRF with other approaches, including the Bayesian framework. We conclude that RelTime will be also useful for phylogenies with branch lengths derived not only from molecular data, but also morphological and biochemical traits.


1982 ◽  
Vol 10 (18) ◽  
pp. 5711-5716 ◽  
Author(s):  
Gu Xian-Rong ◽  
Krikor Nicoghosian ◽  
R.J. Cedergren

Sign in / Sign up

Export Citation Format

Share Document