phylogenetic inertia
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anirudh Krishna ◽  
Xiao Nie ◽  
Adriana D. Briscoe ◽  
Jaeho Lee

AbstractThis study uncovers a correlation between the mid-infrared emissivity of butterfly wings and the average air temperature of their habitats across the world. Butterflies from cooler climates have a lower mid-infrared emissivity, which limits heat losses to surroundings, and butterflies from warmer climates have a higher mid-infrared emissivity, which enhances radiative cooling. The mid-infrared emissivity showed no correlation with other investigated climatic factors. Phylogenetic independent contrasts analysis indicates the microstructures of butterfly wings may have evolved in part to regulate mid-infrared emissivity as an adaptation to climate, rather than as phylogenetic inertia. Our findings offer new insights into the role of microstructures in thermoregulation and suggest both evolutionary and physical constraints to butterflies’ abilities to adapt to climate change.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251974
Author(s):  
Sabrina Bettoni ◽  
Angela Stoeger ◽  
Camilo Rodriguez ◽  
W. Tecumseh Fitch

Most aquatic mammals have complex social and communication systems. Interestingly, little is known about otters’ vocal communication compared to other aquatic mammals. Here, for the first time, we acoustically describe vocalizations of the neotropical otter (Lontra longicaudis), a solitary and endangered New World otter species. We recorded vocalizations and behavioral contexts from six captive neotropical otters at Projeto Lontra, Santa Catarina Island, Brazil. Analysis of acoustic parameters were used to classify the vocalizations according to structure and context. We describe six call types with highly tonal as well as chaotic vocalizations with fundamental frequencies ranging from 90 to 2500 Hz. Additionally, we identified sex differences in the usage of calls. Results suggest that the neotropical river otter has a rich vocal repertoire, similar in complexity to other solitary otter species, but less complex than that of the social giant otter. Despite differences in sociality, phylogeny and ecology, L. longicaudis seems to possess vocalizations homologous to those found in other otters (e.g. hah and chirp), suggesting phylogenetic inertia in otter communicative repertoire. Otters thus offer an interesting but neglected group to explore the evolution of communication systems.


2021 ◽  
Author(s):  
Michael J Noonan ◽  
William F Fagan ◽  
Christen Herbert Fleming

Comparing traits across species has been a hallmark of biological research for centuries. While inter-specific comparisons can be highly informative, phylogenetic inertia can bias estimates if not properly accounted for in comparative analyses. In response, researchers typically treat phylogenetic inertia as a form of autocorrelation that can be detected, modelled, and corrected for. Despite the range of methods available for quantifying the strength of phylogenetic autocorrelation, no tools exist for visualising these autocorrelation structures. Here we derive variogram methods suitable for phylogenic data, and show how they can be used to straightforwardly visualise phylogenetic autocorrelation. We then demonstrate their utility for three empirical examples: sexual size dimorphism (SSD) in the Musteloidea, maximum per capita rate of population growth, r, in the Carnivora, and brain size in the Artiodactyla. When modelling musteloid SSD, the empirical variogram showed a tendency for the variance in SSD to stabilise over time, a characteristic feature of Ornstein-Uhlenbeck (OU) evolution. In agreement with this visual assessment, model selection identified the OU model as the best fit to the data. In contrast, the infinitely diffusive Brownian Motion (BM) model did not capture the asymptotic behaviour of the variogram and was less supported than the OU model. Phylogenetic variograms proved equally useful in understanding why an OU model was selected when modelling r in the Carnivora, and why BM was the selected evolutionary model for brain size in the Artiodactyla. Because the variograms of the various evolutionary processes each have different theoretical profiles, comparing fitted semi-variance functions against empirical semi-variograms can serve as a useful diagnostic tool, allowing researchers to understand why any given evolutionary model might be selected over another, which features are well captured by the model, and which are not. This allows for fitted models to be compared against the empirical variogram, facilitating model identification prior to subsequent analyses. We therefore recommend that any phylogenetic analysis begin with a non-parametric estimate of the autocorrelation structure of the data that can be visualized. The methods developed in this work are openly available in the new R package ctpm.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathalie Feiner ◽  
Illiam S. C. Jackson ◽  
Edward L. Stanley ◽  
Tobias Uller

AbstractAnolis lizards originated in continental America but have colonized the Greater Antillean islands and recolonized the mainland, resulting in three major groups (Primary and Secondary Mainland and Greater Antillean). The adaptive radiation in the Greater Antilles has famously resulted in the repeated evolution of ecomorphs. Yet, it remains poorly understood to what extent this island radiation differs from diversification on the mainland. Here, we demonstrate that the evolutionary modularity between girdles and limbs is fundamentally different in the Greater Antillean and Primary Mainland Anolis. This is consistent with ecological opportunities on islands driving the adaptive radiation along distinct evolutionary trajectories. However, Greater Antillean Anolis share evolutionary modularity with the group that recolonized the mainland, demonstrating a persistent phylogenetic inertia. A comparison of these two groups support an increased morphological diversity and faster and more variable evolutionary rates on islands. These macroevolutionary trends of the locomotor skeleton in Anolis illustrate that ecological opportunities on islands can have lasting effects on morphological diversification.


2021 ◽  
Author(s):  
Jacob D. Stachewicz ◽  
Nicholas M. Fountain-Jones ◽  
Austin Koontz ◽  
Hillary Woolf ◽  
William D. Pearse ◽  
...  

AbstractFunctional traits mediate species’ responses to and roles within their environment, and are constrained by evolutionary history. While we have a strong understanding of trait evolution for macro-taxa such as birds and mammals, our understanding of invertebrates is comparatively limited. Here we address this gap in North American beetles with a sample of ground beetles (Carabidae), leveraging a large-scale collection and digitization effort by the National Ecological Observatory Network (NEON). For 154 ground beetle species, we measured seven morphological traits, which we placed into a recently-developed effect-response framework that characterizes traits by how they predict species’ effects on their ecosystems or responses to environmental stressors. We then used cytochrome oxidase one sequences from the same specimens to generate a phylogeny and tested evolutionary tempo and mode of the traits. We found strong phylogenetic signal in, and correlations among, morphological ground beetle traits. These results indicate that, for these species, beetle body shape trait evolution is constrained, and phylogenetic inertia is a stronger driver of beetle traits than (recent) environmental responses. Strong correlations among effect and response traits suggest that future environmental drivers are likely to affect both ecological composition and functioning in these beetles.


2020 ◽  
Vol 287 (1925) ◽  
pp. 20200045
Author(s):  
James B. Dorey ◽  
Scott V. C. Groom ◽  
Elisha H. Freedman ◽  
Cale S. Matthews ◽  
Olivia K. Davies ◽  
...  

Island biogeography explores how biodiversity in island ecosystems arises and is maintained. The topographical complexity of islands can drive speciation by providing a diversity of niches that promote adaptive radiation and speciation. However, recent studies have argued that phylogenetic niche conservatism, combined with topographical complexity and climate change, could also promote speciation if populations are episodically fragmented into climate refugia that enable allopatric speciation. Adaptive radiation and phylogenetic niche conservatism therefore both predict that topographical complexity should encourage speciation, but they differ strongly in their inferred mechanisms. Using genetic (mitochondrial DNA (mtDNA) and single-nucleotide polymorphism (SNP)) and morphological data, we show high species diversity (22 species) in an endemic clade of Fijian Homalictus bees, with most species restricted to highlands and frequently exhibiting narrow geographical ranges. Our results indicate that elevational niches have been conserved across most speciation events, contradicting expectations from an adaptive radiation model but concordant with phylogenetic niche conservatism. Climate cycles, topographical complexity, and niche conservatism could interact to shape island biodiversity. We argue that phylogenetic niche conservatism is an important driver of tropical island bee biodiversity but that this phylogenetic inertia also leads to major extinction risks for tropical ectotherms under future warming climates.


Evolution ◽  
2020 ◽  
Vol 74 (5) ◽  
pp. 979-991 ◽  
Author(s):  
Vincent R. Farallo ◽  
Martha M. Muñoz ◽  
Josef C. Uyeda ◽  
Donald B. Miles

Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 637 ◽  
Author(s):  
Carlos E. Santibáñez-López ◽  
Matthew R. Graham ◽  
Prashant P. Sharma ◽  
Ernesto Ortiz ◽  
Lourival D. Possani

Scorpion toxins are thought to have originated from ancestral housekeeping genes that underwent diversification and neofunctionalization, as a result of positive selection. Our understanding of the evolutionary origin of these peptides is hindered by the patchiness of existing taxonomic sampling. While recent studies have shown phylogenetic inertia in some scorpion toxins at higher systematic levels, evolutionary dynamics of toxins among closely related taxa remain unexplored. In this study, we used new and previously published transcriptomic resources to assess evolutionary relationships of closely related scorpions from the family Hadruridae and their toxins. In addition, we surveyed the incidence of scorpine-like peptides (SLP, a type of potassium channel toxin), which were previously known from 21 scorpion species. We demonstrate that scorpine-like peptides exhibit gene duplications. Our molecular analyses demonstrate that only eight sites of two SLP copies found in scorpions are evolving under positive selection, with more sites evolving under negative selection, in contrast to previous findings. These results show evolutionary conservation in toxin diversity at shallow taxonomic scale.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5902 ◽  
Author(s):  
Carlos E. Santibáñez-López ◽  
Ricardo Kriebel ◽  
Jesús A. Ballesteros ◽  
Nathaniel Rush ◽  
Zachary Witter ◽  
...  

Scorpions have evolved a variety of toxins with a plethora of biological targets, but characterizing their evolution has been limited by the lack of a comprehensive phylogenetic hypothesis of scorpion relationships grounded in modern, genome-scale datasets. Disagreements over scorpion higher-level systematics have also incurred challenges to previous interpretations of venom families as ancestral or derived. To redress these gaps, we assessed the phylogenomic relationships of scorpions using the most comprehensive taxonomic sampling to date. We surveyed genomic resources for the incidence of calcins (a type of calcium channel toxin), which were previously known only from 16 scorpion species. Here, we show that calcins are diverse, but phylogenetically restricted only to parvorder Iurida, one of the two basal branches of scorpions. The other branch of scorpions, Buthida, bear the related LKTx toxins (absent in Iurida), but lack calcins entirely. Analysis of sequences and molecular models demonstrates remarkable phylogenetic inertia within both calcins and LKTx genes. These results provide the first synapomorphies (shared derived traits) for the recently redefined clades Buthida and Iurida, constituting the only known case of such traits defined from the morphology of molecules.


2018 ◽  
pp. 375-402
Author(s):  
J. Antonio Baeza ◽  
Emiliano H. Ocampo ◽  
Tomás A. Luppi

In the subphylum Crustacea, species from most major clades have independently evolved symbiotic relationships with a wide variety of invertebrate and vertebrate hosts. Herein, we review the life cycle disparity in symbiotic crustaceans. Relatively simple life cycles with direct or abbreviated development can be found among symbiotic decapods, mysids, and amphipods. Compared to their closest free-living relatives, no major life cycle modifications were detected in these clades as well as in most symbiotic cirripeds. In contrast, symbiotic isopods, copepods, and tantulocarids exhibit complex life cycles with major differences compared to their closest free-living relatives. Key modifications in these clades include the presence of larval stages well endowed for dispersal and host infestation, and the use of up to 2 different host species with dissimilar ecologies throughout their ontogeny. Phylogenetic inertia and restrictions imposed by the body plan of some clades appear to be most relevant in determining life cycle modifications (or the lack thereof) from the “typical” ground pattern. Furthermore, the life cycle ground pattern is likely either constraining or favoring the adoption of a symbiotic lifestyle in some crustacean clades (e.g., in the Thecostraca).


Sign in / Sign up

Export Citation Format

Share Document